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Control of Chaotic System by  
Combined Synchronization 
Radoslav H. Radev1, Dragomir P. Chantov2 

 
Abstract – In this paper synthesis of a relay-based control of 

chaotic systems is proposed for the cases when only one of the 
state variables is accessible. A second identical chaotic system is 
constructed and the two systems are synchronized on the basis of 
the accessible variable. A combined approach is proposed to 
achieve synchronization, which combines the advantages of two 
of the known synchronization methods. Only variables of the 
second system take part in the control.  

Keywords – chaotic systems, chaotic synchronization, control, 
Pontryagin’s maximum principle. 

I. INTRODUCTION 

The chaotic systems are nonlinear continuous or discrete 
systems which possess complex dynamical behaviour by 
certain conditions and this behaviour is characterized by a 
strange attractor in the state space, a positive Lyapunov 
exponent and a specific type of Poincare section. The main 
feature of these systems is their extreme sensitivity of the 
initial conditions. Due to their character, the chaotic systems 
are for long time considered as non-controllable systems. Ott, 
Grebogi и Yorke [1] however suggest a method for their 
control and since then the proposed methods for control and 
stabilization of chaos increase continuously. On the other 
hand in the last years there is a growing interest to another 
phenomenon from the field of the chaotic dynamics - this is 
the so called chaotic synchronization. The aim here is to 
connect two chaotic systems in such a way that the dynamics 
of one of the systems to be dependent of the dynamics of the 
other. As the control as well as the synchronization of chaotic 
systems find application in different fields of the technics 
[2,3]. 

In this paper a specific task is considered, which involves a 
combination of the problems about chaotic control and 
synchronization. The main idea is to construct control 
functions which will stabilize a given chaotic system on the 
basis of the Pontryagin's maximum principle. A second 
(auxiliary in this case) identical chaotic system is built, which 
is synchronized with the main one by a connecting function in 
which only one of the state variables takes part. After identical 
synchronization between the two systems is achieved, the 
control function, in which only variables from the auxiliary 
system take part, is applied to the first system.  This control  
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function stabilizes the main chaotic system into a 
preliminarily selected unstable fixed point. To exemplify the 
proposed control approach we choose the Willamowski-
Rossler chaotic system, which describes the processes in a 
chemical reactor. 

II. CONTROL AND SYNCHRONIZATION OF CHAOTIC 
SYSTEMS 

Control In the general case a continuous chaotic system 
can be described by the following nonlinear equation: 

                              ),()( pxfx =t& ,                                      (1) 

where nℜ∈x  is the state variables vector of the system, 
kℜ∈p , k<n is the parameters vector and f is a nonlinear 

function.  
 There exist different methods to control the chaotic 

systems. In this paper control synthesis, based on the 
Pontryagin's maximum principle, is proposed. On the basis of 
the necessary conditions of the maximum principle [3] we will 
seek an external force control of the type: 

                             Buxfx += )()(t& ,                                  (2) 
where B is a column-vector of the type:  
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We will say the control is an i-th input control, if 0≠ib  
and 0=jb  for ij ≠∀ . An auxiliary vector 
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 is introduced for the formulation of the maximum 
principle. Then the so called Hamiltonian function is 
composed: 

                        ),,()(),,,( tttH T uxfλλux =                       (3) 
From the maximum principle [3] the Hamiltonian function 

has a maximum over the optimal system trajectory, i.e.:  

                                        0=
∂
∂

u
H ,                             (4)      

from which for iλ  we obtain 
                                          0=iλ .                              
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       (For each t with exception of the interruption points of 
f and u the following condition is fulfilled over the optimal 
trajectory: 
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x

λ H
dt

td                               (5) 

If the terminal time is not given, the additional condition: 
                                 0),,( =λuxH                                    (6) 

is imposed. 
It follows from (4) that the control will be relay-based from 

the type: 
                                )(xissignku = ,                                (7) 

where is  are the control functions, which satisfy the condition 
for a non-zero vector λ . 

By taking into consideration (4), (5) and (6) for third-order 
systems and i-th input control only one variant of control 
function is  for each i is possible. It is obtained from the 
following system: 
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From (8) the control function is: 
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Synchronization.  In the general case when speaking of 
chaotic synchronization we take two connected chaotic 
systems of the type: 
                                   ( )xfx =& ,                                        (10) 

                                   ( )xfx ~~~ =& ,                                       (11) 
with the corresponding solutions ( )( )00 ,, ttt xx  and  

( )( )00
~,,~ ttt xx , where 1nℜ∈x , 2~ nℜ∈x , and the initial 

conditions of the two systems are ( )0tx  and ( )0
~ tx . For 

21 nn =  and ( ) ( )xfxf =~~  the two systems are identical. The 
solutions ( )( )00 ,, ttt xx  and ( )( )00

~,,~ ttt xx  of the systems (10) 
and (11) with initial conditions ( )0tx  and ( )0

~ tx  are identically 
synchronized [2,4] if the following function 
             ( ) ( )[ ] 00)(~, >∀≡== ttttQQ tt exx ,           (12) 

where ( )te  is the difference function between the two 
systems: 

( ) ( )( ) ( )( )0000
~,,~,, ttttttt xxxxe −= .               (13) 

The equality (12) means that after starting the two systems 
from different initial conditions, some time later they will 
begin to oscillate identically in the generalized state space. 
However this will only be possible if the synchronization 
process is stable. Measure of the stability of the 
synchronization give the conditional Lyapunov exponents. It 
is also accepted to refer to the system (10) as Master, and to 
system (11) as Slave. 

The two main approaches for chaotic synchronization are 
the decomposition methods and the feedback ones. The 
common between them is that they define some type of 
connection between the two systems. By the decomposition 
methods one mentally "decomposes" the Master system into 

two or more parts, one of which drives the Slave system by 
direct substitution of some of its variables with the variables 
of the driving part of the decomposed Master system. 
Generally the two systems are described by the following 
equations [2,4]: 
                    Master ( )( )xhxfx ,=& ,                                  (14) 

                   Slave   ( )( )xhxfx ,~~ =& ,                               (15) 
where ( )xh  is the driving part of the decomposed Master 
which drives the Slave system. 

 In the case of the feedback methods with one-way 
coupling a signal, proportional to the difference between the 
two systems, is added to the Slave system [4]:  

                  Master ( )xfx =& ,                                        (16) 

                  Slave    ( ) ( )xxExfx ~~~ −+= α& ,                     (17) 
where α  is the feedback gain and E is the coupling matrix 
with a proper dimension.    

In the present paper we suggest a concurrent application 
of the two approaches [5]: 

                    Master ( )ix,xfx =& ,                                     (18) 

                   Slave   ( ) ( )xxExfx ~,~~ −+= αix& ,                (19) 
where the decomposition part of the coupling is restricted to 
the partial replacement method, where the connection is 
only by a single variable xi, substituted only in one place in 
the Slave system. The second part of the connection (the 
feedback coupling) can be selected in such way that only the 
same variable xi to take part in it and the whole connection 
between the Master and the Slave system to be only with one 
variable. 

Control by synchronization. The idea about control of 
chaotic systems by means of a synchronized system is 
shown on fig.1.  
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Fig.1. Control by synchronization 

If we suppose that only one variable xi  of the Master 
system is accessible and the aim is to stabilize this system, 
the control functions (9), in which in the general case all 
state variables of the Master system take part, can not be 
obtained. In such a case we can construct a Slave system and 
synchronize the two systems by the accessible variable xi . 
Then the proposed by us combined approach for 
synchronization (18) and (19) has the advantage that it 
permits many different variants of connection, even with 
only one variable. From all these variants we can choose that 
with the shortest transient process and to control the Master 
system again with control of type (7), but now the control 
function (9) is: 
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The proposed approach for control by synchronization 
will be illustrated with a concrete third-order chaotic system, 
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since most of the known chaotic systems are relatively 
simple third-odred nonlinear continuous systems.  

III. WILLAMOWSKI-ROSSLER SYSTEM 

The Willamowski-Rossler (WR) [6, 7] describes the 
processes in a chemical reactor and is given with the 
following equations: 

,)( 4314
2
22212

2
111111 −−− +−+−−== kxxkxkxxkxkxkfx x&  

,)( 323
2
2221222 −− +−−== kxkxkxxkfx x&                        (21) 

 ,)( 2
3535431433 xkxkkxxkfx −− −++−== x&  

where the variables ix  are the concentrations of the species in 
the reactor and they can take only positive values. The system 
has 10 parameters ik± , with nominal values, by which chaos is 
present in the system: 

,2.311 =k 2.01 =−k , 572.12 =k , 1.02 =−k , ,8.103 =k
12.03 =−k , 02.14 =k , 01.04 =−k , 5.165 =k  i 5.05 =−k   

For these values the system evolves chaotically, which is 
evident by the presence of a typical chaotic attractor in the 
system state space, which is shown on fig.2. 

 
 
 
 
 
 
 
 
 
 
 

Fig.2. Chaotic attractor of the WR system  
 
When analizing a chaotic system it is important to find its 

equilibrium or fixed points, i.e. the points for which:  
                                   ( ) 0=xf .                                       (22) 
By means of the program Matlab the fixed points of the 

WR system are calculated for the nominal values of the 
system variables and we find that the system has eight fixed 
points (27):  
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Only the points *
8

*
6 xx ÷  have real meaning (there aren't 

negative concentrations xi). The point *
8x  is a stable fixed 

point (the eigenvalues of the [ ]8JI −p  matrix are all 
negative, J8 is the system Jacobian in this point) and hence 
this point is not of interest for the control, where the purpose 
is to stabilize the system into an unstable fixed point. the 
point *

7x  due to its proximity to  *
8x  is also not of interest 

notwithstanding the fact that it is unstable. Then we set the 
aim of the control to stabilize the system into the unstable 

fixed point *
6x . We can evaluate the controllability of the 

system around this point from the matrix: 
                   [ ]iiii BJBJBQ 2

666 = ,                         (23)  

where J6 is the system Jacobian in the point *
6x . For each i 

the matrix is of full rank, i.e. the system is controllable 
around the point *

6x .  

IV. SYNCHRONIZATION AND CONTROL BY 
SYNCHRONIZATION OF THE WR SYSTEM 

A Slave system according to (19) is synthesized. For the 
synchronization we choose a combination of the methods of 
the partial replacement, by which one variable ix from the 
Master system substitutes its corresponding variable of the 
Slave system only in one place; and the standard one-way 
coupling, by which there are three variants for the E matrix: 
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With these limitations imposed, there exist 45 different 
variants of connection between the two systems, which are 
examined in detail in [5]. 12 of them are with a connecting 
signal, in which only one state variable is present and the 
synchronization scheme is stable (the calculated conditional 
Lyapunov exponents [2] are all negative). To illustrate the 
proposed in part II control approach we will examine one 
variant in detail. By this variant the Master system is given 
by (21) and the slave system is:  

,)~(~~~~~~~
114314

2
22212

2
11111 xxkxxkxkxxkxkxkx −++−+−−= −−− α&

,~~~~~
323

2
222122 −− +−−= kxkxkxxkx&                                             (25) 

.~~~~~ 2
353543143 xkxkkxxkx −− −++−=&  

For 10=α  the calculated conditional Lyapunov 
exponents are 73.42,1 −=λ , 07.473 −=λ , i.e. stable 
synchronization between the two systems will exist. This is 
shown on fig.3, which depicts the 
differences )(~)()( txtxte iii −= . The initial conditions of the 

systems are [ ]T125)0( =x and [ ]T016)0(~ =x . 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Differences )(~)()( txtxte iii −=  
 

After identical synchronization between the two systems 
is achieved, we can use the Slave system to stabilize the 
Master system according to fig.1. The control functions for 
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first-, second- and third-input control are calculated 
according to (20) with the Slave system variables:  

3223321
~~)~~(~~)~( xxxfxdcxbxas −−++=x ,                       (26) 

)(,, 43524342 kkkkckkbkka −=== −− , 52 −= kkd , 42kkf −= , 
)~()~2~()~( 322122 xx fxkxks −+−= ,                                    (27) 

)~(~)~( 2143 xx fxks −= .                                                     (28) 
The control is relay-based of the type (7). The controlled 

Master system has the form (2). 
We choose to apply the concept of the so called local 

control [3] for each-input control. The sense of the local 
control is that by this type of control the control function is 
not applied immedeately to the controlled system, but the 
system is let to run free and only when the system trajectory 
enters into a sphere in the state space with a center - the 
chosen for the stabilization fixed point and radius - R, 
defined by us, we will apply the control. We will say that the 
system is stabilized in the point  *

6x  when the trajectory 

enters into another small sphere with the same center *
6x  and 

sufficiently small radius r<R. 

V. EXPERIMENTAL RESULTS 

The results shown are for the synchronization scheme 
(25). The other synchronization variants between the Master 
and the Slave systems give similar results, the only 
difference is the length of the transient until the stabilization 
of the Master system. Fig.4 depicts the state space of the 
controlled Master system and the control (7) for first-input 
control with a control function (26). The initial conditions of 
the two systems are [ ]T125)0( =x and [ ]T016)0(~ =x . 
The big and the small spheres of the local control are with 
radii  R = 6 and r = 0.8, the control gain is k = -20. The 
system stabilizes in the point [ ]T67.1826.765.7*

61 =x . 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. First input control - state space and control function u(t). 

 
The same characteristics are shown on fig.5 for the second-

input control with a control function (27). The systems are 
started from the same initial conditions. The spheres are with 
radii R = 6 and r = 0.3, the control gain is k = 10. The system 
stabilizes in the point [ ]T1.1827.76.7*

62 =x .  
Fig.6 shows the state space and the control for the third-

input control with a control function (28) and the same initial 
conditions. The spheres are with radii R = 6 and r = 0.5, the 
control gain is k = -20. The system stabilizes in the 
point [ ]T94.1745.787.6*

63 =x . 

 
 
 
 
 
 
 
 
 
 

 
Fig.5. Second input control - state space and control function u(t). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. Third input control - state space and control function u(t). 

VI. CONCLUSION 

In this article an approach for the stabilization of chaotic 
systems, based on the phenomenon chaotic synchronization, is 
proposed. We also propose a synchronization method, which 
offers a great number of variants of connection between the 
Master and the Slave systems and by some of them the 
connection is only by one variable. This gives us the 
opportunity to choose the best variant in terms of speed of 
synchronization and starting from it, to realize a proper 
control to the Master system on the basis of the maximum 
principle, which will stabilize the system into a preliminarily 
chosen unstable fixed point.  
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