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Asymmetrical Load-Flow Solution by Fast Decoupled 
Method in Sequence Domain  

Ljupco D. Trpezanovski1, Vladimir C. Strezoski2 and Metodija B. Atanasovski3

Abstract – In this paper a very fast method for asymmetrical 
load-flow solution in sequence domain is presented. The 
proposed method is based on the standard Fast Decoupled 
method for symmetrical load-flow solution applied on the 
positive- sequence circuit, enhanced with two systems of linear 
equations which represent negative- and zero-sequence circuits. 
Few recently published procedures are used to establish this 
method in sequence domain. The real power system is analyzed 
by proposed method and the results are compared with results 
obtained by standard Fast decoupled method in phase domain.  

Keywords – Asymmetrical load-flow, sequence domain, Fast 
Decoupled method. 

I. INTRODUCTION 

Two very important studies for the power systems are load-
flow and faulted states analysis. The steady state symmetrical 
load-flow studies (SLF) are performed in the more efficient 
and comfortable sequence domain instead of in the phase 
domain. Symmetrical states are good approximations of usual 
states of three-phase power systems. But actually, because of the 
presence of long unbalanced (untransposed) lines, asymmetrical 
or single-phase loads (as induction furnaces and traction motors 
etc.), asymmetrical states in power systems are occurred. These 
states cause: negative-sequence currents at generator terminals rise 
heating in their rotors; malfunctions of protective relays; zero-
sequence currents increase greatly the effect of inductive coupling 
between parallel transmission lines; higher power system loss, etc. 

For more precise analysis of three-phase power system 
asymmetrical states, the asymmetrical load-flow (ALF) analysis is 
required. ALF calculations are also required to study the effects of 
various phase arrangements of transmission lines, single pole 
switchings, etc.  

The solution of ALF problem was successfully  performed 
using methods in phase domain (Newton-Raphson and Fast 
decoupled procedures) [1-3]. But unfortunately, there are mutual 
couplings between phases and 6x6 node-admittance matrices 
which describe the generators, transformers and lines are not 
sparse. This fact implies increasing of both: memory for problem 
storage and CPU time for problem solution in the phase domain. 
Therefore, there was a question: are the methods in sequence 
domain more efficient against the methods in phase domain? 
Long time the sequence domain was avoided in the ALF methods 
because of: presence of phase shifts of the three-phase 
transformers (ideal transformers with complex turns ratios in their  

 
 
 
 
 
  

sequence circuits); mutually couplings among sequence circuits 
for unbalanced lines and asymmetrical phase loads which cannot 
be specified in the sequence  domain. Recently published 
procedures as: new scaling concept [4], unbalanced line decoupled 
model in sequence domain [5], [6], enhanced bus classification 
and synthesizing procedure [7], [11] and asymmetrical phase 
loads model specified in the sequence domain [6], [10] enabled to 
establish a few new methods for ALF calculations in sequence 
domain. The Reduced admittance matrix method [8] and fast 
method [9] in sequence domain are more efficient than any 
method in phase domain.  

II. NEW APPROACH FOR POWER SYSTEM 
ELEMENTS MODELING 

The most important step of the ALF methods establishing 
in sequence domain is power system elements modeling. 
These models should have such properties that the entire 
power system can be modeled with three decoupled positive-, 
negative- and zero-sequence circuits.  

The synchronous generator is balanced element of the 
power system. In the sequence domain it can be presented 
with three decoupled sequence circuits.  Each sequence circuit 
is represented with corresponding impedance ( d

Gz  for 

positive-, i
Gz  for negative- and o

Gz  for zero-sequence). If the 

generator is grounded the nGz  represents the generator 
grounding impedance. With the sequence admittances obtained 
from the sequence impedances, the 6x6 node-admittance 
matrix representing the synchronous generator in the sequence 
domain is formed [10].  

Balanced transmission overhead lines can be presented with 
three lumped-π decoupled sequence circuits. Each circuit 
consists series admittance between line ends and two equal 
shunt admittances at the line ends. Consequently, 6x6 node-
admittance matrix for the line model will be sparse. If the 
unbalanced lines are considered in sequence domain there are 
inductive and capacitive couplings among positive-, negative- 
and zero-sequence circuits. These couplings are expressed by 
mutually non-zero admittances in the 6x6 node-admittance 
matrix for the line model which is not sparse. In this case the 
line model cannot be presented with lumped-π decoupled 
sequence circuits. But decoupling procedure explained in [5], 
enables to express the couplings by compensation current 
sources instead of mutually admittances. The current 
controlled sources in series and shunt branches of each 
sequence lumped-π circuit include the coupling influences 
from the other sequences. Now, the unbalanced line model 
can be presented with three decoupled sequence lumped-π 
circuits, with sparse 6x6 node-admittance matrix.  
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Another problem to establish new methods for ALF 
calculation in sequence domain was transformer model. The 
three-phase transformer with complex turn ratio can be treated 
as a balanced element and its model can be presented with the 
three decoupled sequence circuits. But the problem of 
complex turn ratio still exists because ideal transformers with 
complex turns ratios disturb the symmetry and the simplicity 
of deriving power system node-admittance matrices in the 
sequence domain. Transferring the values from the absolute to 
the relative value domain by the standard PU system doesn’t solve 
the problem of phase shifting. Application of the “New scaling 
concept” definitely eliminates these problems. The result of 
scaling the absolute in relative values with this concept is 
transformer model represented with three decoupled sequence 
circuits in which only the transformer (and grounding) 
impedances exist. The phase shifts are eliminated from the 
sequence circuits and transformer 6x6 node-admittance matrix is 
simple and sparse [10], [11]. 

The load model in phase domain is given by specified load 
active and reactive powers for each phase. If the complex 
voltages from the load buses k are on disposal, the injected 
complex currents for each phase can be calculated. With 
known complex currents in phase domain and inverse 
transformation matrix [11], injected complex currents in node k in 
any sequence circuit can be obtained very easy. From the sequence 
complex voltages and currents, the sequence complex powers can 
be calculated. Thus, the load model in sequence domain can be 
presented through injected complex currents or injected complex 
powers in node k of any sequence circuit. The widely explanation 
of power system elements modeling in sequence domain can be 
find in [10]. 

Consequently, all necessary conditions for all (balanced and 
unbalanced) power system elements representation with 
decoupled sequence circuits are achieved. Thus, the entire power 
system can be modeled with three decoupled positive-, 
negative- and zero-sequence circuits.  

III. NEW BUS CLASSIFICATION AND SYNTHESIZING 
PROCEDURE 

The classifications of buses applied in all ALF methods in 
phase or sequence domain for example as proposed in [1-3], [5], 
[6] were taken directly from classical SLF problem statements. 
They consist of three types of buses: “load busbars”, “generator 
busbars” and a “slack (or swing) busbar; or: “PQ bus”, “PV bus” 
and “θV (slack) bus”. Their definitions were generalized for the 
purpose of the ALF problem statement. But these definitions are 
not performed in a full accordance with the nature of the ALF 
problem, because they do not enable a correct treatment of Q 
limits enforcement at PV buses.  

In the new classification there are VPΣ  type buses in 
which the value of three-phase injected active power ( ΣP ) and 
the control law of the automatic voltage regulator (AVR) are 
specified. The Vθ bus (slack bus) is a bus in which the angle 
of a voltage and the control law of the generator AVR are 
specified. To provide a correct treatment of reactive power 
limits enforcement at the generators (at VPΣ buses), a new 

type of buses called ΣΣQP  are introduced. In this type of 
buses values of the three-phase injected active and reactive 
powers (sums of phase powers ΣP and ΣQ ) are specified. All 
three types of buses mentioned above are suppressed in the 
high voltage buses of their corresponding step-up transformers. 
The last PQ  type of buses is a standard type of buses in which 
values of three pairs of phase injected active and reactive 
powers are specified. More detailed explanation for the 
different types of buses is given in [7], [9]. 

The general representation of the sequence circuits for a 
generator and its step-up transformer are shown on Fig. 1. The bus 
presented in this figure denoted as g, can be of Vθ , VPΣ  or 

ΣΣQP  type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Usually, in practice the voltage control and the active 
power control are associated with the high voltage transformer 
bus g. The generator internal bus voltage, as well as the 
voltage drops on the generator and transformer impedances 
are not of interest simultaneously with values of other power 
system quantities. Thus, the equivalent impedance in the 
positive- sequence circuit can be omitted and equivalent 
impedances in the negative- and zero-sequence circuits can be 
suppressed in the transmission network as it is shown on the 
Fig. 2. The procedure which enable to exclude the external 
and internal generator buses and associate the bus properties 
to the high  voltage buses in their corresponding step-up 
transformers is called synthesizing procedure. Also suppression of 
the negative- and zero-sequence impedances in the power 
system is part of this procedure. This suppression enables zero-
valued injected currents and powers in the corresponding negative 
and zero-sequence nodes g. Therefore, the injected currents and 
powers are different from zero only at the positive-sequence node. 
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Fig. 1. Scaled sequence circuits of synchronous generator and 
step-up transformer. 
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Now, the issue of shortage of four equations corresponding to 
each VPΣ , Vθ  and ΣΣQP  bus in the sequence domain can be 
solved [7]. One more benefit of the synthesizing procedure is 
power system buses reduction. Thus, the power system with 
NG generators and total number of buses n can be treated as a 
system with GNnr 2−=  buses or 3r nodes. 

IV. FAST DECOUPLED METHOD DEFINITION   

Taking into account all above mentioned procedures, entire  
power system can be presented with positive-, negative- and 
zero-sequence scaled, decoupled and node-reduced circuits. In 
accordance with these facts, the system of three linear nodal-
voltage equations represents the base ALF model in sequence 
domain: 

d
rc

d
r

d
rr IUY =× ,      (1) 

i
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i
r

i
rr IUY =× ,          (2) 

o
rc

o
r

o
rr IUY =× ,      (3) 

where d
rr×Y , i

rr×Y , o
rr×Y  are node-admittance; d

rU , i
rU  and 

o
rU  are node-voltage matrices for positive-, negative- and 

zero-sequence decoupled circuits respectively. The matrices 
of node injected complex currents, corrected by compensation 
currents (as result of circuits decoupling) are denoted as d

rcI , 
i
rcI  and o

rcI . At first Eq. (1) can be conjugate and than 
multiply from the left by a diagonal matrix containing the 
complex positive-sequence voltages. As the result of this 
procedure, a new nonlinear system of equations representing 
the power system positive-sequence is obtained: 

( ) ( ) d
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d
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d
rr

d
dijr SUYU =∗∗

×, .       (4) 

In Eq. (4), matrix d
rcS  represents complex, compensated 

injected powers in the positive sequence circuit nodes [11]. 
Applying the Taylor’s procedure, the nonlinear system of 

equations given by matrix Eq. (4), can be transformed in the 
new linear system of equations. This new system is consisted 
of equations for differences between the injected specified and 
calculated powers − d

korS∆  in the power system positive-
sequence circuit nodes, represented by the Jacobian dJ  (for 
this sequence circuit) and unknown differences of voltage 
magnitudes and angles given by the matrix dX∆ : 

d
kor

dd SXJ ∆=∆ .         (5) 

or in the well known form with sub-matrices: 
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Actually, the matrix Eq. (6) has the same form as the 
equations which represents the symmetrical Newton-Raphson 
load-flow model [12]. The elements of the sub-matrices dH , 

dN , dM  and dL  in iteration h, can be calculated as:  
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 Because in the power systems X/R>>1 and differences 
between angles )()()( hd

i
hd

k
hd

ki θθθ −=  are very rare greater than 
100, the next approximations can be taken into account: 

1)sin(;1)cos(; )()()()( <<−≈−<< hd
i
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d
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d
ki BG θθθθ .  (16) 

These approximations applied in Eqs. (7) to (15), give zero-
valued sub-matrices: 

 0N ≈d  and 0M ≈d .       (17) 

POWER SYSTEM 

NTT zz 3+

g 

R 

oi  

o
gu

0=o
gi  

T
i
G zz +  

g 

R 

ii  

i
gu

0=i
gi  

g 

R 

di  
d
gu

dd
g ii =  

Fig. 2. Sequence circuits of a generator and its step-up  
transformer represented after synthesizing procedure. 
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Taking into account the above explanations, and Eqs. (2), 
(3), (6) and (17) the new developed Fast Decoupled method 
for ALF solution in sequence domain is defined as: 

d
kor

dd P∆θH ∆=⋅ ,       (18) 
d
kor

ddd QU∆UL ∆=⋅ ,     (19) 
i
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i
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o
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o
rr IUY =× .     (21) 

With the proposed method, the problem of ALF solution is 
considered as solution of SLF problem with standard Fast 
decoupled procedure (Eqs. (18) and (19)) [13] and solution of 
two supplementary systems of linear equations representatives 
of negative- and zero-sequence power system circuits Eqs. 
(20) and (21) respectively. 

V. METHOD VERIFICATION 

The Fast decoupled method is tested on the entire power 
system of the Republic of Macedonia consisting of 63 buses 
of 400, 220 and 110 kV  voltage  level, 53 lines, 5 
interconecting  transformers and 9 equivalent generators with 
step-up transformers. Eight states (variants) are considered. 
Each of the variants is solved with Fast decoupled three-phase 
load-flow method in phase domain (FD ALF-abc) [2] and 
proposed method in sequence domain (FD ALF-dio). The first 
state V1 is symmetrical. All other seven states are more or 
less asymmetrical. For the purpose to eliminate the influence 
of the computer type, the results are given in relative units. 
The base case is V1 solved with proposed Fast decoupled 
method in sequence domain. The results of total number of 
iterations and relative CPU time for each variant solution are 
given in Table I. 
 

TABLE I.  
RESULTS OF THE CALCULATIONS. 

Number of iterations/CPU relative time 

M        V    V1 V2 V3 V4 V5 V6 V7 V8 
FD  ALF- 

abc 
7/ 

8,2 
7/ 

8,2 
57/ 

11,54 
9/ 

8,34 
8/ 

8,24 
10/ 

8,36 
7/ 

8,16 
7/ 

8,25 
FD ALF- 

dio 
9/ 
1,0 

9/ 
1,0 

19/ 
1,39 

8/ 
1,05 

8/ 
1,03 

8/ 
1,09 

9/ 
1,04 

8/ 
1,01 

abc-r.time 
dio-r.time 8,2 8,2 8,3 7,9 8,0 7,7 7,8 8,2 

* M- method; V- variant. 
 

From the results of the Table I it is obvious that proposed 
Fast decoupled method for ALF in sequence domain is very 
efficient, robust and much more faster than standard method 
for ALF in phase domain. Because the power system node-
admittance matrix in sequence domain is sparse, the memory 
storage required for the proposed method is significantly 
smaller then the Fast decoupled method for ALF in phase 
domain.  

 
 
 

VI. CONCLUSION 

Recently published procedures as: enhanced bus 
classification, sequence circuits decoupling, new scaling 
concept, synthesizing procedure and approximations which 
are justified for the power systems enable new approach for 
ALF problem solution. In this paper the efficient very fast 
method based on the standard Fast decoupled method is 
established. The efficiency is achieved in memory 
requirements and CPU time for calculations. The form of the 
decoupled positive-sequence part of the presented ALF model 
is reduced to the form of the classical SLF problem. Thus, the 
standard SLF Fast decoupled procedure [13] is applied inside 
the ALF solution procedure. The negative- and zero-sequence 
parts of the presented ALF model are represented by two 
systems of linear equations and solved by Gauss’s method.  
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