

529

Integration of Object Oriented Web and Centura CMS
Ivan Petković1, Milena Stanković2 , Milan Rajković3, Petar Rajković4

Abstract – Current Web content management systems have
limited possibilities while designing frontend layout and user-
interface in general. Because of their nature of being general
purpose, not every thing that graphic designer has in his mind
can be implemented via CMS. We offer a solution to the problem
by integrating specially developed client side framework with the
rest of the application.

Keywords - object oriented, client side, content management
system

I. INTRODUCTION

A content management system is, as the name says, a
system used to manage the content of a web site. It typically
consists of two elements: the content management application
(also known as backend or BackOffice) and the content
delivery application (or FrontEnd). First one allows the
authors, to manage the creation, modification, and removal of
content from a web site, while the other is focused on the
content delivery to the users. Content management systems
that are implemented using Web technologies, and where
users interact with the system via Web, are known as Web
content management systems.

We are witnesses of the enormous number of Web sites.
Moreover, that number is growing exponentially. In order to
attract users, Web sites must contain some unique features,
they must be user-friendly and must have visual identity. In
order to achieve visual identity, Web site’s client side must be
implemented differently than the concurrent’s client side.
Consequently, we can see various page layouts, Web site
graphic designs and user interfaces. Implementing these
features requires developing specially tailored code for each
site.

On the other hand, content management systems, because
of their nature as being general purpose, have mostly
predefined format of displaying their content delivery
application. That means several different Web sites powered
by the same CMS look similar – which is just the opposite
from the above-mentioned requirement – to have visual
identity.

All authors are with the Faculty of Electrical Engineering,
Aleksandra Medvedeva 14, 18000 Nis. Serbia nad Montenegro,
E-mail: {ivanp, mstankovic, mrajkovic, rajkovicp}@elfak.ni.ac.yu

In order to overcome this problem, we developed a framework
for Web client development and a Web Content Management
System (CMS) called Centura. Framework will be discussed
in detail later, but it is important to mention that its main
purpose is to enable easy development of advanced, visually
unique Web clients (Web application’s client side). It gives
freedom in creating multimedia rich, user friendly and easy
customizable Web sites. Since it has simple, butpowerful
interface towards the server-side part of the application, it can
be easily integrated. On the other hand, Centura is a general
purpose, XML-powered CMS that can be used for managing
web sites for small and medium sized organizations. We
managed to integrate the above-mentioned framework and
Centura, and the result was a content management system
with the superior user interface and non-predefined FrontEnd
display. Centura is still in development phase, but the first test
version has already been used for managing the site of the
laboratory [1].

The purpose of this paper is to describe the way Centura
and the mentioned framework interact [2][3]. In section II we
will discuss about the main parts of the Centura Content
Management System, and afterwards, in section III, we will
describe framework’s architecture. Section IV will explain the
points of integration between server part of the application
and the framework, which resides on the client side. Section V
will explain in more detail how the BackOffice section is
implemented using framework's capabilities.

II. THE MAIN PARTS OF CENTURA

Centura is Web content management system developed
using PHP as a server side technology, and a wide spectrum
of client side technologies (HTML, CSS, DOM, JavaScript).
It is a general purpose CMS which consists of a front-end, that
is basically a Web site that can be accessed by all users, and a
back office (figure 1), which is intended for the people who
have permission to create and manage content. Although
Centura is a Web application, its reach client interface
reminds of desktop applications. As previously said, Centura
consists of FrontEnd and BackOffice. Backoffice provides
functionality for managing site content, users, workflow,
settings and accounts.

530

Fig. 1 The BackOffice of Centura

The site content is hierarchically organized using the

concept of modules, which are similar to folders in operating
systems. Modules act as containers for other modules, binary
files or items, but more importantly, they are used for setting
the access permissions for users and groups. Basic access
privileges are read, write, delete, publish and admin, but some
special-purpose modules can have other predefined privileges,
which are a combination of the basic ones.

An item is the key concept of Centura, because it
represents a web page that will be displayed in the front-end.
Items are XML structures that enable creating different types
of web pages like articles, courses, and polls. They are
created and edited using an online XML editor that is also a
part of Centura’s back-office.

The CMS supports advanced user management and access
control. Users are organized into groups that all have
administrators assigned to them. Users and groups can be later
attached to modules by setting the corresponding access
privileges (Fig. 1). The concept of the group administrator
makes the user management completely distributed, where
every group is controlled independently.

III. FRAMEWORK FOR WEB CLIENT

Purpose of the framework is rapid, quality and cost
effective development of the Web application’s client side. Its
main features are:

- Object oriented approach
- Separation of content, control and presentation
- Elimination of redundancy
- Decreased development time and costs
- More flexible for team work
- Robustness
- Customizable
- Automated and visual development (using CASE tools)
- GUI components management and configuration
- Multilanguage support
Framework provides developers a more natural way of

thinking. Instead of thinking on the level of HTML elements,
they can think on the level of real world objects, like menus
and page layouts. To be more specific, the framework
recognizes several types of objects, including controllers,

menu objects, layout objects, components, managers and
other.

Framework is consisted of several subsystems, each
assigned for distinct set of tasks. Following is the list of the
subsystems:

- core, main subsystem that acts like the interface
between the other subsystems and the rest of the
application (e.g. server-side section)

- layout management subsystem, for manipulating,
adding and removing page layouts. Every page layout
(design) consists of one or more layout components

- navigation subsystem, whose primary purpose is to
manage menu structures and the way how they are
displayed

- windows management subsystem, which contains logic
for creating, removing and managing windows in all
other ways

- document management subsystem, with the main
purpose to integrate all documents on the Web page
into unique entity, therefore enabling interaction
between them

- component management subsystem, for supporting and
managing user interface components. Each component
implements interface that provides customization,
graphic and dictionary support (Fig 3)

As you can see on Fig. 2, Controller is the main component
of the framework's core. Hence, all the communication
between the external sources and the rest of the system is
going through controller. This architecture provides minimal
redundancy and optimal communication between framework
and other systems.

Fig. 2 Architecture of the Web site using the framework

Controlle
r

Navigatio

Page Core

Resources

Develope
r

Web
browser

Web pages (content)

531

Fig 3 Framework's component class diagram

IV. POINT OF INTEGRATION

Since the framework was used for design and development
of the entire client side of the BackOffice, we can sort its
application into several categories:

- navigation development
- design and layout
- document manipulation
- management of components and managers

First three applications are described in the previous

section. Last one represents extended functionality of the
framework, as many components and managers were specially
developed for the BackOffice purposes. Furthermore,
framework's extendible architecture provides only solid basis
for developing objects that are more advanced. As stated
before, there are two types of objects used for extending
framework's basic functionality – components and managers.
Both components and managers are classes derived from
GUIComponent base class. We can see from the class diagram
shown on Fig 3 that DocumentManager-class object knows
about all registered components in the document. Important to
say is that one Web page can contain multiple documents
(stored in frames), and that framework defines only one
DocumentManager-class object for each document on the
page. Similar to Fascade design pattern [6], these managers
possess logic how to manipulate components, and they act
like an interface between controller object and the registered
framework components. Document managers are connected
with the Controller object, therefore creating the network of
document managers with all the capabilities to interact with
each other.

On the other hand, separation between dictionary object
(DictionaryInterface), icon set object (IconSetInterface) and

component (GUIComponentInterface) is crucial for the
implementation of the concepts like customization,
personalization and multilanguage support. In addition, these
architecture represents the interface between client-side and
server-side developers. Implementation files (definitions) of
these classes are loaded in the beginning, but the setting object
and dictionary object are defined by the server-side
developers, who can, using this mechanism, change
component's appearance or even add a new language.

V. BACKOFFICE DESIGN

Centura’s BackOffice is quite different from the
BackOffice sections of other Web CMS. Instead of having a
standardized Web-based logic and layout, it possesses
appearance and functionality of the desktop application. This
provides much better “look and feel”, a crucial factor when
evaluating user-friendly environment.

As we can see on Fig. 1, BackOffice has Windows

Explorer style layout. That means the screen area is divided
into three main parts:

- Main menu and options area (on the top of the page)
- Navigation menu (on the left)
- Content (central part)

Navigation menu is implemented as a dropdown menu.

Corresponding menu controller use dynamically created menu
structure (MenuDataInterface derivate), and a class which
implements dropdown menu (MenuPresentationInterface
derivate).

Content area is loaded after a user selects a menu item
(from the navigation menu). Framework supports seamless
loading of the external pages into layout components, while
the rest of the page stays intact. On contrary to the usual Web
logic, rest of the page is not reloaded, which significantly
decreases the download time. Loaded page is linked to the
controller object, and therefore integrated into the system.
Using this feature, several documents can interact with each
other in a very simple and efficient way.

Seamless loading and multiple document manipulation
happened to be extremely useful for purposes like selecting
users, groups or items from the existing hierarchy. For this
purpose, class named ItemManager has been designed and
implemented. Menu structure is dynamically loaded only after
the user requests the object of that class. On Fig 3 we can see
the ItemManager in action (in the opened window).

VI. CONCLUSION

Integration between the framework and the server side of
the Centura CMS resulted in many significant improvements
and benefits. Flexible and extendible architecture of the
framework enables unlimited possibilities when designing
Web site layout and user-friendly interface.

Our future work will be based on further integration of the
framework and Centura CMS, in order to achieve even more
flexible platform. That would provide advantages like online

532

design of the page or template layout and run-time
customization and personalization of Web sites.

REFERENCES

[1] http://ciitlab.elfak.ni.ac.yu

[2] I. Petković, M. Stanković: Object Oriented Web Client
for Content Management Systems, Proceedings of ICEST
2004, Bitola 16-19 June 2004, 289-292

[3] I. Petković: Component Development of the Client Side of
the Web Applications; Proceedings of 6th International
Conference on Telecommunications in Modern Satellite,

Cable and Broadcasting Services, Telsiks 2003, October
2003.

[4] World Wide Web Consortium, Document Object Model
Level 3, http:/ /www.w3.org/TR/2004/REC-DOM-Level-
3-Val-20040127/

[5] I. Petković: Component Development of the Client Side of
the Web Applications; Proceedings of 6th International
Conference on Telecommunications in Modern Satellite,
Cable and Broadcasting Services, Telsiks 2003, October
2003

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design
Patterns, Addison-Wesley, 1997

