

533

Multilingual Web Application Development on Unicode
Database using Oracle XDK 10g

Daniela C. Nikolic1, Jovanka D. Cekic2, Milentije A. Maksimovic3

Abstract – Data incorporated in XML are more self-

describing and portable and can be easily shared, transformed,
and transported across applications and platforms. In this paper
we present a method for developing multilingual Web
applications using Oracle XDK 10g - a standards-based set of
components, tools and utilities – in order to provide automatic
content delivering and update from Oracle10g database
backend.

Keywords – multilingual web application, Oracle, Java, XML,
XDK.

I. INTRODUCTION

Development of the Internet has provided the companies
around the world with the opportunity to optimize and expand
their businesses. More than 90% of the world population is
non-native English speaking. The challenge and the barrier
towards a success on the global market is the development of
applications with the support for different language and
cultural requirements. A truly global Internet application
needs to support data exchange in a wide range of character
sets, and the user interface must present data in a format that
matches the local convention of the user’s language and
country.

The Oracle 10g Database and Application server represent
a fully internationalized platform for developing and
deploying Internet applications with multilingual support.
Oracle provides full support for Unicode 3.2 standard for
storing, retrieving and updating data in different languages.

There are several approaches in the development of global
Internet applications on Oracle 10g platform. [4] The solution
presented in this paper is based on using one centralized
database with a Unicode character set, and one instance of
Oracle Application server. The application running on Oracle
10g AS is configured to support several locales
simultaneously, so that each client can use different character
set.

Oracle Application Server provides a possibility of
developing applications using different programming
languages and corresponding Web development
environments. The HR application presented in this paper was

1Daniela C. Nikolic is with the University of Nis,

Univerzitetski trg 2, 18000 Nis, Serbia and Montenegro,
E-mail: eli@ni.ac.yu

2Jovanka D. Cekic is with the University of Nis,
Univerzitetski trg 2, 18000 Nis, Serbia and Montenegro,
E-mail: jovanka@ni.ac.yu

3Milentije A. Maksimovic is with the University of Nis,
Univerzitetski trg 2, 18000 Nis, Serbia and Montenegro
E-mail: maxa@ni.ac.yu

developed using Java and XML technologies with XSLT
extension function facility provided by Oracle XDK 10g and
Oracle Application Server Containers for J2EE (OC4J).

II. XML AND DATABASE

XML is a markup language which can be run on any
platform, operating system or environment and it is made in
such a way to give designers mechanisms for better
description of their content. XML does this by letting
designers write their own document-type definitions – DTDs
– which describe tags and attributes sets, and can be used for
describing specific kinds of content. [1]

XML is fully internationalized for both European and Asian
languages, with all conforming processors required to support
the Unicode character set in both UTF-8 and UTF-16
encodings.

XML provides context for words, specifies document
structure, and allows effective search capabilities. It is
flexible, accessible and provides a universal format. [2]

Databases and XML offer complementary functionality for
data storing. Database offers efficient retrieval, database
administration, business intelligence, recovery tools and
procedures, and blocking operations that compromise data
integrity. XML offers easy information exchange, and
interoperability between applications.

III. ORACLE XML SUPPORT

To help application developers in taking advantage of
XML, Oracle Database 10g includes Oracle XML Developer's
Kit (XDK). Oracle XDK 10g is a set of components, tools and
utilities in Java, C, and C++ and available in Oracle Database
10g and Oracle Application Server 10g that ease the task of
building and deploying XML-enabled applications.

Components of Oracle XDK are: XML Parsers, XSLT
Processors, XSLT VM, XML Schema Processors, XML Java
Beans, XML Class Generator, XML SQL Utility, XSQL
Servlet, XML Pipeline Processor, and TransX Utility.

The overall XML infrastructure in Oracle database
includes:

1. XMLType tables and views which provide the storage of
XML data.

2. XML DB Repository which provides an XML document
repository that is optimized for handling XML documents.

3. PL/SQL and SQL/XML functions which allow XML
operations on SQL data and XML content.

4. Java and C XML programming which can be used to add
functionality by building external procedures, such as creating

534

a Java Stored Procedure for SAX stream-based XML
processing. [3]

The Oracle XDK provides the functionality to use
standards-based interfaces to access, modify, transform, and
validate XML documents.

IV. DESIGNING XML DATABASE FOR WEB
APPLICATIONS

Before you start to design XML application using Oracle
XML DB, you have to choose how to store XML data in a
database, how to retrieve or generate XML, and how to create
proper indexes for searching the content in the XML
documents.

1. Storing XML data - There are different ways to store
XML documents inside an Oracle XML database, and each of
them offers different trade-offs in both performance and
functionality. You can store XML documents in CLOB
XMLTypes, XML Schema–based XMLTypes, relational
tables, or external tables. In application presented in this paper
CLOB XMLTypes are used, because this kind of storage best
preserves the original format of XML documents and gives
the maximum flexibility for XML schema evolution. Storing
an intact XML document in a XML Type CLOB is a good
strategy if the XML document contains static content that will
only be retrieved as a whole or updated by replacing the entire
document.

2. Loading XML data - Depending on the XML storage
option chosen, you can use one of the associated data loading
strategy in Oracle DB 10g: SQL*Loader, XML SQL Utility,
TransX Utility, XSQL Servlet, HTTP / Web DAV, or FTP
Interfaces. Upon insertion, XML documents are checked and
only committed if well formed.

3. Generating and retrieving XML data - Oracle Database
10g provides the built-in support for XML, which greatly
simplifies the retrieval of XML content and the conversion
between relational datasets and XML-formatted data. You can
generate XML from SQL data either with SQL XML
functions or with PL/SQL package DBMS_XMLGEN.

4. Searching XML data – By storing XML data in Oracle
DB 10g, you can create SQL indexes and enable users to
efficiently search XML data. Oracle DB 10g provides two
types of search on XML: the Xpath-based search provided
along with the XML Type functions and the full text search
using the Oracle DB component, Oracle Text. Oracle Text can
provide both content and path indexes to search, but data
retrievals need to be done by processing the whole document.
[3]

V. SYSTEM ARCHITECTURE

XML is widely used in content management and Web
publishing systems. One of the reasons is that data in XML
format can easily be transformed by XSLT to various
presentation formats, such as HTML, WML (Wireless
Markup Language), SVG, or any other Web publishing format
that clients request.

Application module presented in this paper represents
human resource application that supports English and Serbian
language, with XML data exchange.

Fig. 1 represents architecture of an Oracle 10g AS
multilingual application and Oracle solution for XML
document storage. It is mainly written in Java, using Java
beans, and Java Server Pages (JSPs). It uses the Unicode
capabilities available in Java, XML, JDBC, and the Oracle10g
XML DB to support multilingual data and a multilingual user
interface.

Clients access the Web application through a Web browser,
passing chosen language as a parameter, which is then stored
in the session data. The request is being redirected to the JSP
page that instantiates a Java bean with business logic. The
Bean accesses the database and extracts the XML data. Those
data are transformed by XSLT JSP tag into the HTML UTF-8
encoded and than sent back to the client. An example is
shown on the Fig. 2.

Database stores XML documents in XMLType column
along with the appropriate encoding.

Fig. 1. System Architecture

VI. MULTILINGUAL SUPPORT

All the programming languages and technologies used for
developing of this Web application have Unicode support.

Fig. 2. Search page for HR application

Web Browser
(Serbian, Latin

script)

Web Browser
(Serbian, Cyrillic

script)

Web Browser
(English)

Web Browser
(German)

ORACLE
database

HTTP

Oracle Application
Server

JSP page

XSLT
Tag Library

Response
(UTF8)

JDBC

Java Bean

535

Internet
browser

Access JSP,
choose language Date.JSP

Locale independent
XML dataXSLT

Extension localizer
Utilities.java

resource bundle

Locale dependant
stylesheet

Preferred locale,
dynamically passed

as a parameter

generates

Extension function calls

Fig. 3. Diagram of the data localization process

After the user selects a language, it is stored in the session

parameters and used in data localization process, shown in
Fig. 3. JSP first extracts locale-independent XML data from
the database, and then forwards them to the XSLT
transformation module. This module then transforms the data
using locale-dependent XSL stylesheet (which also uses
locale-dependent resource bundle with localized strings).

Multilingual support for the application is provided in the
following way:

1. The localizer classes are used in this application to
retrieve Locale-specific user interface prompts/resources.
Every method accepts a valid ISO language code and returns
the user interface prompt/resource string in that language.
This application supports two Locales: English (en) and
Serbian (sr). XSLT Stylesheet calls java function
getInputProperty:

 public static String getInputProperty(String s, String msg)
 {
 Locale l = new Locale(s);
 String lang = l.getLanguage();

 if (lang.equalsIgnoreCase("en") ||
lang.equalsIgnoreCase("sr")) {

 // determine the session locale
 Locale locale = new Locale(lang, "");
 // get the resource bundle for the locale
 ResourceBundle bundle =
ResourceBundle.getBundle("ApplicationMessages",
 locale);
 // return the translated message
 return bundle.getString(msg);
 }
 return "Error in Localizer";
 }

2. Depending on the language function, corresponding file
with all the prompts, messages and resources in that language
is called. Example of English file:

bannertitle1=HUMAN RESOURSE
bannertitle2=SEARCH
...

For accessing Oracle 10g, database JDBC driver is used.
This driver transparently converts the data stored in the
database to and from Java strings. No special handling is
necessary to access Unicode data stored in the database.

Search is implemented by doSearch method, which
searches all property records for given criteria. If the given
criteria is null or a string with 0 length, then that criteria is
treated as a wildcard search. (All records will be selected for
that field).
 DBStatus object contains the result of the operation.

 public DBStatus doSearch(String atitle, String faculty, String
department, String firstname, String lastname)
 {
 String p_atitle;
 String p_faculty;
 String p_department;
 String p_firstname;
 String p_ lastname;

 //Do sanity check on the parameters passed
 if((atitle == null) || (atitle.length() == 0))
 {
 p_atitle = "%";
 }
 else
 {
 p_atitle = atitle.replaceAll("'", "") + "%";
 }
 ...
 DBStatus dbStatus = new DBStatus();
 if(conn == null)
 {
 dbStatus.flag = false;
 dbStatus.returnObject = "Database is not available";
 return dbStatus;
 }
 else
 {
 Statement stmt = null;
 ResultSet r = null;
 try
 {
 stmt = conn.createStatement();

 String query = "SELECT k.id, k.xml_data.getStringVal()
" + " FROM kadrovi k" +
 " WHERE extractValue(k.xml_data,
'/PROPERTY/LOCATION/ATITLE/text()') LIKE '" + p_atitle
+ "' AND " + " extractValue(t.xml_data,
'/PROPERTY/LOCATION/FACULTY/text()') LIKE '" +
 p_faculty + "' AND " + "
extractValue(t.propertyxml,'/PROPERTY/LOCATION/DEPAR
TMENT/text()') LIKE '" + p_department + "' AND " + "

536

extractValue(t.propertyxml,'/PROPERTY/FIRSTNAME/text()')
>= " + p_firstname + " AND " + "
extractValue(t.propertyxml,'/PROPERTY/LASTNAME/text()')
>= " + p_lastname;
 r = stmt.executeQuery(query);
 if(r == null)
 {
 dbStatus.returnObject = "Retrieved Null resultSet";
 dbStatus.flag = false;
 }
 else
 {
 Vector v = new Vector();
 XMLBean xb = new XMLBean();
 xb.setPropertySchema(requestURL);
 while(r.next())
 {
 Property p = xb.getPropertyObject(r.getString(2));
 p.propertyID = r.getString(1);
 v.add(p);
 }
 if(v.size() >= 1)
 {
 dbStatus.flag = true;
 }
 dbStatus.returnObject = v;
 }
 }
 catch(Exception e)
 {
 dbStatus.flag = false;
 dbStatus.ex = e;
 dbStatus.returnObject = "An error was generated while
searching property records";
 }
 finally
 {
 try
 {
 stmt.close();
 }

 catch(SQLException sqe)
 {
 }
 }
 return dbStatus;
 }

VII. CONCLUSION

As XML becomes an integrated part of today’s modern
businesses, the need is critical for databases, application
servers, and development tools that support the family of
XML standards.

Because this support is entirely standards-based, businesses
are assured that their application’s interoperability will be
maximized.

The Oracle XML Database (XML DB) refers to the
collection of XML technologies built into the Oracle Database
10g, providing high-performance and in-built storage
retrieval, and processing of XML. This in-built XML
functionality is integrated with the Oracle-relational database
server to bridge the gap between the relational table-row and
XML hierarchical storage.

Oracle’s programming interfaces – XML Developer’s Kit
(XDK) – provide a platform to efficiently build and deploy
XML solutions.

REFERENCES

[1] N. Pitts: XML In Record TimeTM. Sybex Inc., 2000.
[2] D. S. Ray, E. J. Ray, Mastering HTML and XHTML,
Sybex Inc., 2002.
[3] M. V. Scardina, B. Chang, J. Wang, Oracle Database 10g
XML & SQL: Design, Build & Manage XML Applications in
Java, C, C++ & PL/SQL, Berkeley, CA, McGraw-
Hill/Osborne, 2004.
[4] T. M. Robertson, Oracle Application Server 10g,
Globalization Guide 10g (9.0.4), Oracle Corporation, 2003.

