(5, 2) - Formal Languages

Violeta Manevska ${ }^{1}$, Donco Dimovski ${ }^{2}$

Abstract - The aim of this paper is to define a (5,2)-semigroup automata on free (5,2)-semigroup, with a special attention on (5,2)-formal languages recognizable by them.

Keywords - (5,2)-semigroup, (5,2)-semigroup automaton, (5,2)-language

I. INTRODUCTION

Our goal in writing this talk is to examine a (5,2)-formal language and to proof some properties about them. In that means, we are given an example.

II. (5,2)-SEMIGROUPS AND (5,2)-SEMIGROUP AUTOMATA

Here we recall the necessary definitions and known results. From now on, let B be a nonemty set and let (B, \cdot) be a semigroup, where • is a binary operation.

A semigroup automaton is a triple $(S,(B, \cdot), f)$, where
S is a set, (B, \cdot) is a semigroup, and $f: S \times B \rightarrow S$ is a map satisfying

$$
\begin{equation*}
f(f(s, x), y)=f(s, x \cdot y) \tag{1}
\end{equation*}
$$

for every $s \in S, x, y \in B$.
The set S is called the set of states of $(S,(B, \cdot), f)$ and f is called the transition function of $(S,(B, \cdot), f)$.
A nonempty set B with the $(5,2)$-operation $\left\}: B^{5} \rightarrow B^{2}\right.$ is called a (5,2)-semigroup iff the following equality
$\left\{\left\{x_{1}^{5}\right\} x_{6}^{8}\right\}=\left\{x_{1}\left\{x_{2}^{6}\right\} x_{7}^{8}\right\}=\left\{x_{1}^{2}\left\{x_{3}^{7}\right\} x_{8}\right\}=\left\{x_{1}^{3}\left\{x_{4}^{8}\right\}\right\}$
is an identity for every $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \in B$. It is denoted with the pair $(B,\{ \})$.
Example 1: Let $B=\{a, b\}$. Then the (5,2)-semigroup $(B,\{ \})$ is given by Table 1 .
This example of (5,2)-semigroup is generated by an appropriate computer program.
A (5,2)-semigroup automaton is a triple $(S,(B,\{ \}), f)$ where S is a set, $(B,\{ \})$ is a (5,2)-semigroup, and $f: S \times B^{4} \rightarrow S \times B$ is a map satisfying

$$
f\left(f\left(s, x_{1}^{4}\right), y_{1}^{3}\right)=f\left(s,\left\{x_{1}^{4} y_{1}\right\}, y_{2}^{3}\right)=
$$

[^0]\[

$$
\begin{equation*}
=f\left(s, x_{1},\left\{x_{2}^{4} y_{1}^{2}\right), y_{3}\right)=f\left(s, x_{1}^{2},\left\{x_{3}^{4} y_{1}^{3}\right\}\right), \tag{3}
\end{equation*}
$$

\]

for every $s \in S, x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3} \in B$.

TABLE 1
(5,2)-SEMIGROUP

\{ \}	
$\begin{array}{ll}a & a \\ a & a\end{array}$	(a, a)
$\begin{array}{ll}a & a \\ a & a\end{array}$	(a, a)
$\begin{array}{lll}a & a & a\end{array} \quad b a$	(a,a)
$a \mathrm{a} a \mathrm{~b} b$	(a,a)
$a \mathrm{a} b a \mathrm{a}$	(a, a)
$a \mathrm{a} b a b$	(a, a)
$a \mathrm{a} b \mathrm{~b} a$	(a,a)
$a \mathrm{a} b \mathrm{~b} b$	(a,a)
a bla a a	(a, b)
$a \mathrm{a}$ a a a b	(a, b)
$a b a b a$	(a, b)
$a b a b b$	(a, b)
$\boldsymbol{a} b \begin{aligned} & \text { b }\end{aligned}$	(a, b)
$a b b a b$	(a, b)
$a b b b a$	(a, b)
$a b b b b$	(a, b)
b a a a a	(b,a)
$b a m a b$	(b,a)
	(b,a)
$b a a b b$	(b,a)
$b a b a l a t$	(b,a)
$b a b a b$	(b,a)
$b a b b a$	(b,a)
$b a b b b$	(b,a)
b blala	(b, b)
$b \boldsymbol{b} a \operatorname{a} b$	(b, b)
bb \boldsymbol{a} b	(b, b)
$b \boldsymbol{b} a \boldsymbol{b}$ b	(b, b)
$b \begin{array}{lllll}\text { b }\end{array}$	(b, b)
$b \boldsymbol{b} b a b$	(b, b)
$b \boldsymbol{b} b \boldsymbol{b} a$	(b,b)
$\boldsymbol{b} \boldsymbol{b} \boldsymbol{b} \boldsymbol{b}$ b	(b, b)

The set S is called the set of states of $(S,(B,\{ \}), f)$ and f is called the transition function of $(S,(B,\{ \}), f)$.
2.1^{0} Let $(S,(B, \cdot), \varphi)$ be a semigroup automaton. Then $(S,(B,\{ \}), f)$ is a (5,2)-semigroup automaton with $(5,2)$ operation $\left\}: B^{5} \rightarrow B^{2}\right.$ defined by

$$
\left\{x_{1}^{5}\right\}=\left(x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}, x_{5}\right)
$$

and the transition function $f: S \times B^{4} \rightarrow S \times B$ defined by

$$
f\left(s, x_{1}^{4}\right)=\left(\varphi\left(s, x_{1} \cdot x_{2} \cdot x_{3}\right\}, x_{4}\right) .
$$

2.2 ${ }^{\mathbf{0}}$. If $(S,(B,\{ \}), f)$ is a (5,2)-semigroup automaton, then for every $c \in B$:
i) $\left(B^{2},{ }_{c}\right)$ is a semigroup, where the operation $*_{c}$ is defined by $(x, y){ }_{c}(u, v)=\{x y c u v\}$ for every $(x, y),(u, v) \in B^{2}$;
(ii) $\left(S,\left(B^{2}, *_{c}\right), \psi\right)$ is a semigroup automaton, where the transition function $\psi: S \times B \times B^{2} \rightarrow S \times B$ is defined by $\psi((s, a),(x, y))=f(s, a, x, y, c)$.

Example 2: Let $(B,\{ \})$ be a (5,2)-semigroup given by Table 1 from Example 1 and $S=\left\{s_{0}, s_{1}, s_{2}\right\}$. A $(5,2)$ semigroup automaton $(S,(B,\{ \}), f)$ is given by Table 2 and the graph in Fig. 1.

This example of $(5,2)$-semigroup automaton is generated by computer.

TABLE 2
(5,2)-SEMIGROUP AUTOMATON

	f	s_{0}	s_{1}	s_{2}	
a	a	a	a	$\left(s_{1}, a\right)$	$\left(s_{1}, a\right)$
a	$\left(s_{2}, a\right)$				
	a	a	b	$\left(s_{1}, a\right)$	$\left(s_{1}, a\right)$
a	a	b	a	$\left(s_{2}, a\right)$	
a	a	b	b	$\left(s_{1}, a\right)$	$\left(s_{1}, a\right)$
$\left(s_{1}, a\right)$	$\left(s_{2}, a\right)$				
a	b	a	a	$\left(s_{2}, a\right)$	
a	$\left(s_{2}, b\right)$	$\left(s_{1}, a\right)$	$\left(s_{2}, a\right)$		
a	b	a	b	$\left(s_{2}, b\right)$	$\left(s_{1}, a\right)$
a	b	b	a	$\left(s_{2}, a\right)$	
a	$\left(s_{2}, b\right)$	$\left(s_{1}, a\right)$	$\left(s_{2}, a\right)$		
b	b	b	b	$\left(s_{2}, b\right)$	$\left(s_{1}, a\right)$
b	a	a	a	$\left(s_{2}, a\right)$	
b	a	a	b	$\left(s_{1}, a\right)$	$\left(s_{2}, a\right)$
b	$\left(s_{2}, a\right)$	$\left(s_{2}, b\right)$			
b	a	b	a	$\left(s_{1}, a\right)$	$\left(s_{2}, a\right)$
b	a	b	b	$\left(s_{1}, a\right)$	$\left(s_{2}, b\right)$
b	b	a	a	$\left(s_{2}, a\right)$	$\left(s_{2}, b\right)$
b	b	a	b	$\left(s_{2}, b\right)$	$\left(s_{2}, b\right)$
b	$\left(s_{2}, b\right)$	$\left(s_{2}, b\right)$			
b	b	b	a	$\left(s_{2}, a\right)$	$\left(s_{2}, b\right)$
	$\left(s_{2}, b\right)$				

III. FREE (5,2)-SEMIGROUPS AND (5,2)SEMIGROUP AUTOMATA ON THEM

Let B be a nonempty set. We define a sequence of sets $B_{0}, B_{1}, \ldots, B_{p}, B_{p+1}, \ldots$ by induction as follows:

$$
B_{0}=B
$$

Let B_{p} be defined, and let A_{p} be the subset of B_{p} of all the elements $u_{1}^{2+3 s}, u_{\alpha} \in B_{p}, s \geq 1$. Define B_{p+1} to be $B_{p+1}=B_{p} \cup A_{p} \times\{1,2\}$.
Let $\bar{B}=\bigcup_{p \geq 0} B_{p}$. Then $\quad u \in \bar{B} \quad$ iff $\quad u \in B \quad$ or $u=\left(u_{1}^{2+3 s}, i\right)$ for some $u_{\alpha} \in \bar{B}, s \geq 1, i \in\{1,2\}$.

Define a length for elements of \bar{B}, i.e. a map $\mid: \bar{B} \rightarrow N$ (N is a set of positive integers) as follows:

Fig. 1 (5,2)-semigroup automaton
1^{0} If $u \in B$, then $|u|=1$;
2^{0} If $u=\left(u_{1}^{2+3 s}, i\right)$, then $|u|=\left|u_{1}\right|+\left|u_{2}\right|+\ldots+\left|u_{2+3 s}\right|$.
By induction on the length we are going to define a map $\varphi: \bar{B} \rightarrow \bar{B}$. For $b \in B$, let $\varphi(b)=b$. Let $u \in \bar{B}$ and suppose that for each $v \in \bar{B}$ with $|v|<|u|, \varphi(v) \in \bar{B}$ and
(1) If $\varphi(v) \neq v$, then $|\varphi(v)|<|v|$;
(2) $\varphi(\varphi(v))=\varphi(v)$.

Let $u=\left(u_{1}^{2+3 s}, i\right)$. Then, for each $\alpha, \varphi\left(u_{\alpha}\right)=v_{\alpha} \in \bar{B}$ is defined, $\left|\varphi\left(u_{\alpha}\right)\right| \leq\left|u_{\alpha}\right|$ and $\varphi\left(\varphi\left(u_{\alpha}\right)\right)=\varphi\left(u_{\alpha}\right)$. Let $v=\left(v_{1}^{2+3 s}, i\right)$.
(i) If for some $\alpha, u_{\alpha} \neq v_{\alpha}$, then $\left|v_{\alpha}\right|<\left|u_{\alpha}\right|$, and so, $|v|<|u|$. In this case let $\varphi(u)=\varphi(v)$.
Because $|v|<|u|$, it follows that $\varphi(v)$ is defined, and moreover, (1) and (2) imply that

$$
\begin{aligned}
& |\varphi(u)|=|\varphi(v)| \leq|v|<|u|, \varphi(u) \neq u \text { and } \\
& \varphi(\varphi(u))=\varphi(\varphi(v))=\varphi(v)=\varphi(u) .
\end{aligned}
$$

(ii) Let $u_{\alpha}=v_{\alpha}$ for each α. Then $u=v$. Suppose that there is $j \in\{0,1, \ldots, 3 s\}$ and $r \geq 1$, such that $u_{j+v}=\left(w_{1}^{3 r+2}, i\right)$ for each $v \in\{1,2\}$ and let t be the smallest such j. In this case, let

$$
\varphi(u)=\varphi\left(u_{1}^{t} w_{1}^{3 r+2} u_{t+4}^{3 s+2}, i\right)
$$

Because $\left|\left(u_{1}^{t} w_{1}^{3 r+2} u_{t+4}^{3 s+2}, i\right)\right|<|u|$ it follows that $\varphi(u)$ is well defined, and moreover, (1) and (2) imply that
$\varphi(u) \neq u,|\varphi(u)|<|u|$ and $\varphi(\varphi(u))=\varphi(u)$.
(iii) If $\varphi(u)$ can't be defined by (i) or (ii), let $\varphi(u)=u$. In this case, $\varphi(\varphi(u))=\varphi(u)=u$ and $|\varphi(u)|=|u|$.

The above discusion and (i), (ii) and (iii) complete the inductive step, and so we have defined a map $\varphi: \bar{B} \rightarrow \bar{B}$. Moreover, we have proved the folloing:

Lemma: (a) For $b \in B, \varphi(b)=b$;
(b) For each $u \in \bar{B},|\varphi(u)| \leq|u|$;
(c) For $u \in \bar{B}$, if $\varphi(u) \neq u$, then $|\varphi(u)|<|u|$;
(d) For each $u \in \bar{B}, \varphi(\varphi(u))=\varphi(u)$.

Now, let $Q=\varphi(\bar{B})$. By Lemma (d),
$Q=\{u \mid u \in \bar{B}, \varphi(u)=u\}$.
Define a map []$: Q^{5} \rightarrow Q^{2}$, by $\left[u_{1}^{5}\right]=\left(v_{1}^{2}\right)$
$\Leftrightarrow v_{i}=\varphi\left(u_{1}^{5}, i\right)$ for each $i \in\{1,2\}$.
Because $u_{j} \in Q$, it follows that $\left(u_{1}^{5}, i\right) \in \bar{B}$, and so $\varphi\left(u_{1}^{5}, i\right) \in Q$ for each $i \in\{1,2\}$. Hence [] is well defined.
Theorem: $(Q,[])$ is a free $(5,2)$ - semigroup with a basis B .
Let $(S,(B,\{ \}), f)$ be a $(5,2)$-semigroup automaton.
Now, we define a sequence of maps
$\psi_{0}, \psi_{1}, \ldots, \psi_{p}, \psi_{p+1}, \ldots$ for a sequence of sets
$B_{0}, B_{1}, \ldots, B_{p}, B_{p+1}, \ldots$ by induction as follows:
$\psi_{0}: B_{0} \rightarrow B_{0}$ with $\psi_{0}(b)=b$, for each $b \in B_{0}$;
$\psi_{1}: B_{1} \rightarrow B_{0}$ with $\psi_{1}\left(b_{1}^{n}, i\right)=\left\{b_{1}^{n}\right\}_{i} ;$
$\psi_{2}: B_{2} \rightarrow B_{0}$ with $\psi_{2}\left(u_{1}^{n}, i\right)=\left\{\psi_{1}\left(u_{1}\right) \ldots \psi_{1}\left(u_{n}\right)\right\}_{i}$ \vdots
$\psi_{p}: B_{p} \rightarrow B_{0}$ with

$$
\psi_{p}\left(u_{1}^{n}, i\right)=\left\{\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{n}\right)\right\}_{i}
$$

;
Because $\bar{B}=\cup_{p \geq 0} B_{p}$, we define a map $\psi: \bar{B} \rightarrow B_{0}$ with $\psi(u)=\psi_{p}(u)$ for $u \in \bar{B}$ and $|u| \leq p$. Now we will prove that ψ is well defined. If

$$
\begin{aligned}
& u=\left(u_{1}^{r}\left(w_{1}^{2+3 s}, i_{1}\right)\left(w_{1}^{2+3 s}, i_{2}\right) u_{r+3}^{2+3 t}, i\right), \\
& v=\left(u_{1}^{r} w_{1}^{2+3 s} u_{r+3}^{2+3 t}, i\right)
\end{aligned}
$$

and $\varphi(u)=\varphi(v)$, we have to prove that $\psi(u)=\psi(v)$. We have

$$
\psi(u)=\psi_{p}(u)=
$$

$$
\begin{aligned}
& =\psi_{p}\left(u_{1}^{r}\left(w_{1}^{2+3 s}, i_{1}\right)\left(w_{1}^{2+3 s}, i_{2}\right) u_{r+3}^{2+3 t}, i\right)= \\
& =\left\{\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{r}\right) \psi_{p-1}\left(w_{1}^{2+3 s}, i_{1}\right) \psi_{p-1}\left(w_{1}^{2+3 s}, i_{2}\right)\right. \\
& \\
& \left.\psi_{p-1}\left(u_{r+3}\right) \ldots \psi_{p-1}\left(u_{2+3 t}\right)\right\}_{i}= \\
& =\left\{\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{r}\right)\left\{\psi_{p-2}\left(w_{1}\right) \ldots \psi_{p-2}\left(w_{2+3 s}\right)\right\}_{i_{1}} \ldots\right. \\
& \left.\left\{\psi_{p-1}\left(w_{1}\right) \ldots \psi_{p-2}\left(w_{2+3 s}\right)\right\}_{i_{2}} \psi_{p-1}\left(u_{r+3}\right) \ldots \psi_{p-1}\left(u_{2+3 t}\right)\right\}_{i}= \\
& =\left\{\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{r}\right) \psi_{p-1}\left(w_{1}\right) \ldots \psi_{p-1}\left(w_{2+3 s}\right)\right. \\
& \\
& \left.\psi_{p-1}\left(u_{r+3}\right) \ldots \psi_{p-1}\left(u_{2+3 t}\right)\right\}_{i} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \psi(v)=\psi_{p}(v)=\psi_{p}\left(u_{1}^{r} w_{1}^{2+3 s} u_{r+3}^{2+3 t}, i\right)= \\
& =\left\{\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{r}\right) \psi_{p-1}\left(w_{1}\right) \ldots \psi_{p-1}\left(w_{2+3 s}\right)\right. \\
& \left.\psi_{p-1}\left(u_{r+3}\right) \ldots \psi_{p-1}\left(u_{2+3 t}\right)\right\}_{i} .
\end{aligned}
$$

Hence $\psi(u)=\psi(v)$. On the other hand, $Q=\varphi(B)$, so it
follows that the restriction of ψ on Q is well defined.
Now again, we define a sequence of maps
$\tau_{0}, \tau_{1}, \ldots, \tau_{p}, \tau_{p+1}, \ldots$ for a sequence of sets
$B_{0}, B_{1}, \ldots, B_{p}, B_{p+1}, \ldots$ by induction as follows:
$\tau_{0}: S \times B_{0}^{4} \rightarrow S \times B_{0}$ with $\tau_{0}\left(s, x_{1}^{4}\right)=f\left(s, x_{1}^{4}\right) ;$
$\tau_{1}: S \times B_{1}^{4} \rightarrow S \times B_{1}$ with
$\tau_{1}\left(s,\left(u_{11}^{1 \alpha_{1}}, i_{1}\right),\left(u_{21}^{2 \alpha_{2}}, i_{2}\right),\left(u_{31}^{3 \alpha_{2}}, i_{3}\right),\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)=$
$f\left(s, \psi_{1}\left(u_{11}^{1 \alpha_{1}}, i_{1}\right), \psi_{1}\left(u_{21}^{2 \alpha_{2}}, i_{2}\right), \psi_{1}\left(u_{31}^{3 \alpha_{3}}, i_{3}\right), \psi_{1}\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)$
$\tau_{2}: S \times B_{2}^{4} \rightarrow S \times B_{2}$ with
$\tau_{2}\left(s,\left(u_{11}^{1 \alpha_{1}}, i_{1}\right),\left(u_{21}^{2 \alpha_{2}}, i_{2}\right),\left(u_{31}^{3 \alpha_{3}}, i_{3}\right),\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)=$ $f\left(s, \psi_{2}\left(\bar{u}_{11}^{1 \alpha_{1}}, i_{1}\right), \psi_{2}\left(\bar{u}_{21}^{2 \alpha_{2}}, i_{2}\right), \psi_{2}\left(\bar{u}_{31}^{3 \alpha_{3}}, i_{3}\right), \psi_{2}\left(\bar{u}_{41}^{4 \alpha_{4}}, i_{4}\right)\right)$
\vdots
$\tau_{p}: S \times B_{p}^{4} \rightarrow S \times B_{p}$ with
$\tau_{p}\left(s,\left(u_{11}^{1 \alpha_{1}}, i_{1}\right),\left(u_{21}^{2 \alpha_{2}}, i_{2}\right),\left(u_{31}^{3 \alpha_{3}}, i_{3}\right),\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)=$ $f\left(s, \psi_{p}\left(\bar{u}_{11}^{1 \alpha_{1}}, i_{1}\right), \psi_{p}\left(\bar{u}_{21}^{2 \alpha_{2}}, i_{2}\right), \psi_{p}\left(\bar{u}_{31}^{3 \alpha_{3}}, i_{3}\right), \psi_{p}\left(\bar{u}_{41}^{4 \alpha_{4}}, i_{4}\right)\right)$

Now we define a map τ for the sequence of maps $\tau_{0}, \tau_{1}, \ldots, \tau_{p}, \tau_{p+1}, \ldots$ by $\tau: S \times \bar{B}^{4} \rightarrow S \times \bar{B}$, so that $\left.\tau\right|_{B_{p}}=\tau_{p}$ and
$\tau\left(s,\left(u_{11}^{1 \alpha_{1}}, i_{1}\right),\left(u_{21}^{2 \alpha_{2}}, i_{2}\right),\left(u_{31}^{3 \alpha_{3}}, i_{3}\right),\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)=$ $\tau_{p}\left(s,\left(u_{11}^{1 \alpha_{1}}, i_{1}\right),\left(u_{21}^{2 \alpha_{2}}, i_{2}\right),\left(u_{31}^{3 \alpha_{3}}, i_{3}\right),\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)=$ $f\left(s, \psi_{p}\left(u_{11}^{1 \alpha_{1}}, i_{1}\right), \psi_{p}\left(u_{21}^{2 \alpha_{2}}, i_{2}\right), \psi_{p}\left(u_{31}^{3 \alpha_{3}}, i_{3}\right), \psi_{p}\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)=$ $f\left(s, \psi\left(u_{11}^{1 \alpha_{1}}, i_{1}\right), \psi\left(u_{21}^{2 \alpha_{2}}, i_{2}\right), \psi\left(u_{31}^{3 \alpha_{3}}, i_{3}\right), \psi\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)$.

Because ψ is well defined, it follows that τ is well defined. On the other hand, $Q=\varphi(\bar{B})$ so $\bar{\varphi}$ denotes the map $\bar{\varphi}: S \times Q^{4} \rightarrow S \times Q$ defined by

$$
\begin{aligned}
& \bar{\varphi}\left(s,\left(u_{11}^{1 \alpha_{1}}, i_{1}\right),\left(u_{21}^{2 \alpha_{2}}, i_{2}\right),\left(u_{31}^{3 \alpha_{3}}, i_{3}\right),\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)= \\
= & \tau\left(s,\left(u_{11}^{1 \alpha_{1}}, i_{1}\right),\left(u_{21}^{2 \alpha_{2}}, i_{2}\right),\left(u_{31}^{3 \alpha_{3}}, i_{3}\right),\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)= \\
= & f\left(s, \psi\left(u_{11}^{1 \alpha_{1}}, i_{1}\right), \psi\left(u_{21}^{2 \alpha_{2}}, i_{2}\right), \psi\left(u_{31}^{3 \alpha_{3}}, i_{3}\right), \psi\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right) .
\end{aligned}
$$

Moreover, $(S,(Q,[]), \bar{\varphi})$ is a (5,2)-semigroup automaton, where $(Q,[])$ is a free (5,2)-semigroup with a basis B.

IV. RECOGNIZABLE $(5,2)$-LANGUAGES

Any subset $L^{(5,2)}$ of the universal language $Q^{*}=\bigcup_{p \geq 1} Q^{p}$, where Q is a free (5,2)-semigroup with a basis B, is called a (5,2)-language (formal (5,2)-language) on the alphabet B.
A (5,2)-language $L^{(5,2)} \subseteq Q^{*}$ is called recognizable if there exists:
(1) a (5,2)-semigroup automaton $(S,(B,\{ \}), f)$, where the set S is finite;
(2) an initial state $s_{0} \in S$;
(3) a subset $T \subseteq S$ such that

$$
L^{(5,2)}=\left\{w \in Q^{*} \mid \bar{\varphi}\left(s_{0},(w, 1),(w, 2)\right) \in T\right\}
$$

where $(S,(Q,[]), \bar{\varphi})$ is the $(5,2)$-semigroup automaton constructed above, for the $(5,2)$-semigroup automaton $(S,(B,\{ \}), f)$.
We also say that the $(5,2)$-semigroup automaton $(S,(B,\{ \}), f)$ recognizes $L^{(5,2)}$, or that $L^{(5,2)}$ is recognized by $(S,(B,\{ \}), f)$.

Example 3: Let $(S,(B,\{ \}), f)$ be a (5,2)-semigroup automaton given in Example 2. We construct the $(5,2)-$ semigroup automaton $(S,(Q,[]), \bar{\varphi})$ for the $(5,2)$ semigroup automaton $(S,(B,\{ \}), f)$.

A (5,2)-language $L^{(5,2)}$, which is recognized by the $(5,2)$ semigroup automaton $(S,(Q,[]), \bar{\varphi})$, with initial state S_{0} and terminal state $\left(s_{1}, a\right)$ is
$L^{(5,2)}=\left\{w \in Q^{*} \mid w=w_{1} w_{2} \ldots w_{q}, \quad q \geq 5, \quad\right.$ where $w_{l}=\left\{\begin{array}{l}\left(u_{1}^{n}, i\right), n \geq 5, u_{\alpha} \in Q \\ \left(a^{*} b^{*}\right)^{*}\end{array}, l \in\{1,2, \ldots, q\}\right.$, and:
a) If $i=1$, then:
a1) $\left(u_{1}^{n}, 1\right)=a$, where

$$
\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{n}\right)=a(a \cup b)\left(a^{t} b^{l} a^{h}\right)^{*}
$$

a2) $\left(u_{1}^{n}, 1\right)=b$, where

$$
\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{n}\right)=b(a \cup b)\left(a^{t} b^{l} a^{h}\right)^{*}
$$

b) If $i=2$, then:
b1) $\left(u_{1}^{n}, 2\right)=a$, where

$$
\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{n}\right)=(a \cup b) a\left(a^{t} b^{l} a^{h}\right)^{*}
$$

b2) $\left(u_{1}^{n}, 2\right)=b$, where

$$
\psi_{p-1}\left(u_{1}\right) \ldots \psi_{p-1}\left(u_{n}\right)=(a \cup b) b\left(a^{t} b^{l} a^{h}\right)^{*}
$$

and $\psi_{p}\left(w_{1}\right) \ldots \psi_{p}\left(w_{q}\right)=(a \cup b) a(a \cup b)^{2}\left(a^{t} b^{l} a^{h}\right)^{*}$,
for $t+l+h=3 k, t, l, h \in\{0,1,2, \ldots\}, k \geq 1$,
$q=3 k+4\}$.
4. 1^{0} Let $L^{(5,2)}$ be a (5,2)-language on the set B recognized by (5,2)-semigroup automaton $(S,(Q,[]), \bar{\varphi})$. Let $(S,(Q,[]), \bar{\varphi})$ be a $(5,2)$-semigroup automaton with initial state s_{0} and a set of terminal states $T \times C \subseteq S \times B$. Then $x \tilde{L}^{(2,1)} c \subseteq L^{(5,2)}$ for each $x \in Q$ and for any language $L^{(2,1)}$, which is recognized by the semigroup automaton $\left(S \times Q,\left(Q^{2},{ }_{c}\right), \psi\right)$ with an initial state $S^{\prime}{ }_{0}=\left(s_{0}, x\right)$, a set of terminal states $T \times C$, where $\psi: S \times Q \times Q^{2} \rightarrow S \times Q$ is a transition function defined by $\psi\left((s, x), y_{1}^{2}\right)=\bar{\varphi}\left(s, x, y_{1}^{2}, c\right)$ for $c \in Q^{p}$ and p is the least non-negative integer, such that $2+p \equiv 0(\bmod 3)$, and $\tilde{L}^{(2,1)}=\left\{\tilde{w} \mid w \in L^{(2,1)}\right\}$.

Proof: $L^{(5,2)}$ is a recognizable (5,2)-language on the set B by the (5,2)-semigroup automaton $(S,(Q[]), \bar{\varphi})$ with an initial state S_{0} and a set of terminal states $T \times C \subseteq S \times B^{n-t}$, so

$$
L^{(5,2)}=\left\{w \in Q^{*} \mid w=w_{1} w_{2} \ldots w_{3 q+4}, q \geq 1\right. \text { and }
$$

$$
\bar{\varphi}\left(s_{0},\left(w_{1}^{3 q+2}, 1\right),\left(w_{1}^{3 q+2}, 2\right), \psi_{p-1}\left(w_{3 q+3}\right), \psi_{p-1}\left(w_{3 q+4}\right)\right)=
$$

$$
\bar{\varphi}\left(s_{0}, \psi_{p-1}\left(w_{1}\right),\left(w_{2}^{3 q+3}, 1\right),\left(w_{2}^{3 q+3}, 2\right), \psi_{p-1}\left(w_{3 q+4}\right)\right)=
$$

$$
\left.\bar{\varphi}\left(s_{0}, \psi_{p-1}\left(w_{1}\right), \psi_{p-1}\left(w_{2}\right),\left(w_{3}^{3 q+4}, 1\right),\left(w_{3}^{3 q+4}, 2\right)\right) \in T \times C\right\} .
$$

By Proposition $2.2^{0},\left(S \times Q,\left(Q^{2},{ }_{c}\right), \psi\right)$ is a semigroup automaton. It recognizes a language $L^{(2,1)}$ with a set of initial states $S^{\prime}{ }_{0}=\left(s_{0}, x\right)$ and a set of terminal states $T \times C$, so it is of the form

$$
L^{(2,1)}=\left\{w \in\left(Q^{2}\right)^{*} \mid \psi\left(s_{0}^{\prime}, w\right) \in T \times C\right\}
$$

Let $w \in L^{(2,1)}$. It follows that $w \in\left(Q^{2}\right)^{*}$ and

$$
\psi\left(s_{0}^{\prime}, w\right) \in T \times C . \text { But } s_{0}^{\prime}=\left(s_{0}, x\right) \text {, so }
$$

$$
\begin{aligned}
\bar{\varphi}\left(s_{0}, x,(\tilde{w}, 1),\right. & (\tilde{w}, 2), c)=\bar{\varphi}\left(s_{0}, x, w, c\right)= \\
& =\psi\left(\left(s_{0}, x\right), w\right)=\psi\left(s_{0}^{\prime}, w\right) \in T \times C
\end{aligned}
$$

Thus $x \tilde{w} C \in L^{(5,2)}$, i.e. $x \tilde{L}^{(2,1)} c \subseteq L^{(5,2)}$.
4.2^{0} Let $L^{(2,1)}$ be a recognizable language on the set B by a semigroup automaton $(S,(B,\| \|), \xi)$ with an initial state $s_{0} \in S$ and a set of terminal states $T \subseteq S$, and $(S,(B,\{ \}), f)$ be an (5,2)-semigroup automaton constructed by a semigroup automaton $(S,(B,\| \|), \xi)$. Let $f: S \times B^{4} \rightarrow S \times B$ is a transition function defined by $f\left(s, x_{1}^{4}\right)=\left(\xi\left(s,\left\|x_{1}^{3}\right\|\right), x_{4}\right)$. Then $L^{(2,1)} a \subseteq L^{(5,2)}$, for each $a \in B$, where $L^{(5,2)}$ is a recognizable (5,2)-language on the set B by the $(5,2)$-semigroup automaton $(S,(Q,[]), \bar{\varphi})$ with an initial state $s_{0} \in S$ and a set of terminal states $T \times\{a\}$.

Proof: A language $L^{(2,1)}$ is recognizable by a semigroup automaton $(S,(B,\| \|), \xi)$ with initial state $s_{0} \in S$ and a set of terminal states $T \subseteq S$, so

$$
L^{(2,1)}=\left\{w \in B^{*} \mid \xi\left(s_{0}, w\right) \in T\right\}
$$

By Proposition $2.1^{0},(S,(B,\{ \}), f)$ is a (5,2)-semigroup automaton. We construct an (5,2)-semigroup automaton $(S,(Q,[]), \bar{\varphi}), \quad$ where $\quad Q=\varphi(\bar{B}) \quad$ and $\bar{\varphi}: S \times Q^{4} \rightarrow S \times Q$ is a transition function defined by

$$
\begin{aligned}
& \bar{\varphi}\left(s,\left(u_{11}^{1 \alpha_{1}}, i_{1}\right),\left(u_{21}^{2 \alpha_{2}}, i_{2}\right),\left(u_{31}^{3 \alpha_{3}}, i_{3}\right),\left(u_{41}^{4 \alpha_{4}}, i_{4}\right)\right)= \\
= & f\left(s, \psi_{p}\left(u_{11}^{1 \alpha_{1}}, i_{1}\right), \psi_{p}\left(u_{21}^{2 \alpha_{2}}, i_{2}\right), \psi_{p}\left(u_{31}^{3 \alpha_{3}}, i_{3}\right), \psi_{p}\left(\bar{u}_{41}^{4 \alpha_{4}}, i_{4}\right)\right) .
\end{aligned}
$$

It follows that a recognizable (5,2)-language $L^{(5,2)}$ on the set B by (5,2)-semigroup automaton $(S,(Q,[]), \bar{\varphi})$, with initial state $s_{0} \in S$ and a set of terminal states $T \times\{a\}$ is of the form

$$
L^{(5,2)}=\left\{w \in Q^{*} \mid w=w_{1} w_{2} \ldots w_{3 q+4}, q \geq 1\right. \text { and }
$$

$\bar{\varphi}\left(s_{0},\left(w_{1}^{3 q+2}, 1\right),\left(w_{1}^{3 q+2}, 2\right), \psi_{p-1}\left(w_{3 q+3}\right), \psi_{p-1}\left(w_{3 q+4}\right)\right)=$
$=\bar{\varphi}\left(s_{0}, \psi_{p-1}\left(w_{1}\right),\left(w_{2}^{3 q+3}, 1\right),\left(w_{2}^{3 q+3}, 2\right), \psi_{p-1}\left(w_{3 q+4}\right)\right)=$ $\left.=\bar{\varphi}\left(s_{0}, \psi_{p-1}\left(w_{1}\right), \psi_{p-1}\left(w_{2}\right),\left(w_{3}^{3 q+4}, 1\right),\left(w_{3}^{3 q+4}, 2\right)\right) \in T \times C\right\}$. Let $w \in L^{(2,1)},|w| \geq 3 q+3$ i.e. $w=w_{1}^{3 q+3}, q \geq 1$ and $a \in B$. Then

$$
\begin{aligned}
& \bar{\varphi}\left(s_{0},\left(w_{1}^{3 q+2}, 1\right),\left(w_{1}^{3 q+2}, 2\right), \psi_{p-1}\left(w_{3 q+3}\right), a\right)= \\
& =\bar{\varphi}\left(s_{0},(w, a)\right)=\left(\xi\left(s_{0}, w\right), a\right) \in T \times\{a\}
\end{aligned}
$$

Thus $w a \in L^{(5,2)}$, i.e $L^{(2,1)} a \subseteq L^{(5,2)}$.

V. CONCLUSION

The results was given in this paper, are of the scientific interest, because there was defined a (5,2)-languages as a consequence of the generalization of the semigroup automata in case $(5,2)$. Also, here was given the conection between (2,1)-languages and (5,2)-languages.

REFERENCES

[1] D.Dimovski, "Free Vector Valued Semigroups", Proc. Conf. "Algebra and Logic", Cetinje, (1986), 55-62
[2] Cupona G., Celakovski N., Markovski S., Dimovski D. "Vector Valued Groupoids, Semigroups and Groups", Maced. Acad. Sci. and Arts, Skopje (1988), pp. 3-73
[3] Trenčevski K., Dimovski D. "Complex Commutative Vector Valued Groups", Maced. Acad. Sci. and Arts, Skopje (1992)
[4] D.Dimovski, V.Manevska, "Vector Valued ($n+k$)Formal Languages", Proc. 10th Congress of Yugoslav Mathematicians, Belgrade, (2001), 153-159
[5] V.Manevska, D.Dimovski, "Properties of the (3,2)Languages Recognized by $(3,2)$-Semigroup Automata", MMSC, Borovets, (2002), 368-373

[^0]: ${ }^{1}$ Violeta Manevska is with the University "St. Clement Ohridski"Bitola, Faculty of Technical Sciences, Bitola, Ivo Lola Ribar b.b. 7000 Bitola, Macedonia,e-mail:violeta.manevska@uklo.edu.mk
 ${ }^{2}$ Donco Dimovski is with the Univesity "Sts. Cyril and Methodus"Skopje, Faculty of Mathematics and Natural Sciences, Institute of Mathematics,e-mail: donco@iunona.pmf.ukim.edu.mk

