(5, 2) - Formal Languages

Violeta Manevska¹, Donco Dimovski²

Abstract – The aim of this paper is to define a (5,2)-semigroup automata on free (5,2)-semigroup, with a special attention on (5,2)-formal languages recognizable by them.

Keywords - (5,2)-semigroup, (5,2)-semigroup automaton, (5,2)-language

I. INTRODUCTION

Our goal in writing this talk is to examine a (5,2)-formal language and to proof some properties about them. In that means, we are given an example.

II. (5,2)-SEMIGROUPS AND (5,2)-SEMIGROUP AUTOMATA

Here we recall the necessary definitions and known results. From now on, let B be a nonemty set and let (B, \cdot) be a semigroup, where \cdot is a binary operation.

A semigroup automaton is a triple $(S, (B, \cdot), f)$, where S is a set, (B, \cdot) is a semigroup, and $f: S \times B \to S$ is a map satisfying

$$f(f(s, x), y) = f(s, x \cdot y), \qquad (1)$$

for every $s \in S$, $x, y \in B$.

The set S is called the set of states of $(S, (B, \cdot), f)$ and f is called the transition function of $(S, (B, \cdot), f)$.

A nonempty set B with the (5,2)-operation $\{ \}: B^5 \to B^2$ is called a (5,2)-semigroup iff the following equality

 $\{\{x_1^5\}x_6^8\} = \{x_1\{x_2^6\}x_7^8\} = \{x_1^2\{x_3^7\}x_8\} = \{x_1^3\{x_4^8\}\}$ (2) is an identity for every $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \in B$. It

is denoted with the pair $(B, \{ \})$.

Example 1: Let $B = \{a, b\}$. Then the (5,2)-semigroup $(B, \{\})$ is given by Table 1.

This example of (5,2)-semigroup is generated by an appropriate computer program.

A (5,2)-semigroup automaton is a triple $(S, (B, \{ \}), f)$ where S is a set, $(B, \{ \})$ is a (5,2)-semigroup, and $f: S \times B^4 \to S \times B$ is a map satisfying $f(f(s, x_1^4), y_1^3) = f(s, \{x_1^4 y_1\}, y_2^3) =$

$$= f(s, x_1, \{x_2^4 y_1^2\}, y_3) = f(s, x_1^2, \{x_3^4 y_1^3\}), \qquad (3)$$

for every $s \in S$, $x_1, x_2, x_3, x_4, y_1, y_2, y_3 \in B$.

TABLE 1
(5,2)-SEMIGROUP

(

{ }	
aaaaa	(<i>a</i> , <i>a</i>)
a a a a b	(<i>a</i> , <i>a</i>)
aaaba	(<i>a</i> , <i>a</i>)
aaabb	(<i>a</i> , <i>a</i>)
aabaa	(<i>a</i> , <i>a</i>)
aabab	(<i>a</i> , <i>a</i>)
aabba	(<i>a</i> , <i>a</i>)
aabbb	(<i>a</i> , <i>a</i>)
abaaa	(a,b)
a b a a b	(<i>a</i> , <i>b</i>)
ababa	(<i>a</i> , <i>b</i>)
ababb	(a , b)
abbaa	(a,b)
abbab	(a , b)
abbba	(a , b)
<i>a b b b b</i>	(a , b)
baaaa	(b ,a)
baaab	(b ,a)
baaba	(b ,a)
baabb	(b , a)
babaa	(b , a)
babab	(b ,a)
babba	(b ,a)
babbb	(b , a)
bbaaa	(b,b)
bbaab	(b,b)
bbaba	(b,b)
bbabb	(b,b)
<u>bbbaa</u>	(b,b)
bbbab	(b,b)
	(b,b)
	(nn)

The set S is called the set of states of $(S, (B, \{ \}), f)$ and f is called the **transition function** of $(S, (B, \{ \}), f)$. **2.1**⁰ Let $(S, (B, \cdot), \varphi)$ be a semigroup automaton. Then $(S, (B, \{ \}), f)$ is a (5,2)-semigroup automaton with (5,2)operation $\{ \}: B^5 \to B^2$ defined by

$$\{x_1^5\} = (x_1 \cdot x_2 \cdot x_3 \cdot x_4, x_5)$$

and the transition function $f: S \times B^4 \to S \times B$ defined by $f(s, x_1^4) = (\varphi(s, x_1 \cdot x_2 \cdot x_3), x_4)$.

¹Violeta Manevska is with the University "St. Clement Ohridski"-Bitola, Faculty of Technical Sciences, Bitola, Ivo Lola Ribar b.b. 7000 Bitola, Macedonia,e-mail:violeta.manevska@uklo.edu.mk ²Donco Dimovski is with the Univesity "Sts. Cyril and Methodus"-

Skopje, Faculty of Mathematics and Natural Sciences, Institute of Mathematics,e-mail: donco@iunona.pmf.ukim.edu.mk

2.2⁰. If $(S, (B, \{\}), f)$ is a (5,2)-semigroup automaton, then for every $c \in B$:

i) $(B^2, *_c)$ is a semigroup, where the operation $*_c$ is defined by $(x, y) *_c (u, v) = \{xycuv\}$ for every $(x, y), (u, v) \in B^2$;

(ii) $(S, (B^2, *_c), \psi)$ is a semigroup automaton, where the transition function $\psi : S \times B \times B^2 \to S \times B$ is defined by $\psi((s, a), (x, y)) = f(s, a, x, y, c)$.

Example 2: Let $(B, \{ \})$ be a (5,2)-semigroup given by Table 1 from Example 1 and $S = \{s_0, s_1, s_2\}$. A (5,2)semigroup automaton $(S, (B, \{ \}), f)$ is given by Table 2 and the graph in Fig. 1.

This example of (5,2)-semigroup automaton is generated by computer.

TABLE 2(5,2)-SEMIGROUP AUTOMATON

f	s_0	s_1	<i>s</i> ₂
аааа	(s_l,a)	(s_l,a)	(s_{2}, a)
a a a b	(s_l,a)	(s_l,a)	(s_2, a)
a a b a	(s_l,a)	(s_l,a)	(s_2, a)
a a b b	(s_{l},a)	(s_{I},a)	(s_2, a)
abaa	(s_2, b)	(s_l,a)	(s_2, a)
abab	(s_2, b)	(s_l,a)	(s_{2}, a)
abba	(s_2, b)	(s_l,a)	(s_2, a)
abbb	(s_2, b)	(s_l,a)	(s_2, a)
baaa	(s_l,a)	(s_{2},a)	(s_2, b)
baab	(s_l,a)	(s_{2}, a)	(s_2, b)
baba	(s_l,a)	(s_{2},a)	(s_2, b)
babb	(s_{l},a)	(s_{2},a)	(s_2, b)
bbaa	(s_{2}, a)	(s_2, b)	(s_2, b)
bbab	(s_{2}, a)	(s_2, b)	(s_2, b)
bbba	(s_{2}, a)	(s_2, b)	(s_2, b)
b b b b	(s_2, a)	(s_2,b)	(s_2,b)

III. FREE (5,2)-SEMIGROUPS AND (5,2)-SEMIGROUP AUTOMATA ON THEM

Let *B* be a nonempty set. We define a sequence of sets $B_0, B_1, ..., B_p, B_{p+1}, ...$ by induction as follows:

$$B_0 = B.$$

Let B_p be defined, and let A_p be the subset of B_p of all the elements u_1^{2+3s} , $u_{\alpha} \in B_p$, $s \ge 1$. Define B_{p+1} to be $B_{p+1} = B_p \cup A_p \times \{1,2\}$.

Let $\overline{B} = \bigcup_{p \ge 0} B_p$. Then $u \in \overline{B}$ iff $u \in B$ or $u = (u_1^{2+3s}, i)$ for some $u_\alpha \in \overline{B}, s \ge 1, i \in \{1, 2\}$.

Define a length for elements of \overline{B} , i.e. a map $||:\overline{B} \to N (N \text{ is a set of positive integers})$ as follows:

 1^0 If $u \in B$, then |u| = 1;

2⁰ If $u = (u_1^{2+3s}, i)$, then $|u| = |u_1| + |u_2| + ... + |u_{2+3s}|$. By induction on the length we are going to define a map $\varphi: \overline{B} \to \overline{B}$. For $b \in B$, let $\varphi(b) = b$. Let $u \in \overline{B}$ and suppose that for each $v \in \overline{B}$ with |v| < |u|, $\varphi(v) \in \overline{B}$ and

(1) If $\varphi(v) \neq v$, then $|\varphi(v)| < |v|$; (2) $\varphi(\varphi(v)) = \varphi(v)$.

Let $u = (u_1^{2+3s}, i)$. Then, for each α , $\varphi(u_{\alpha}) = v_{\alpha} \in \overline{B}$ is defined, $|\varphi(u_{\alpha})| \le |u_{\alpha}|$ and $\varphi(\varphi(u_{\alpha})) = \varphi(u_{\alpha})$. Let $v = (v_1^{2+3s}, i)$.

(i) If for some α , $u_{\alpha} \neq v_{\alpha}$, then $|v_{\alpha}| < |u_{\alpha}|$, and so, |v| < |u|. In this case let $\varphi(u) = \varphi(v)$.

Because |v| < |u|, it follows that $\varphi(v)$ is defined, and moreover, (1) and (2) imply that

 $|\varphi(u)| = |\varphi(v)| \le |v| < |u|, \quad \varphi(u) \ne u \text{ and}$ $\varphi(\varphi(u)) = \varphi(\varphi(v)) = \varphi(v) = \varphi(u).$

(ii) Let $u_{\alpha} = v_{\alpha}$ for each α . Then u = v. Suppose that there is $j \in \{0,1,...,3s\}$ and $r \ge 1$, such that $u_{j+\nu} = (w_1^{3r+2}, i)$ for each $\nu \in \{1,2\}$ and let t be the

 $u_{j+\nu} = (w_1^{-1}, t)$ for each $\nu \in \{1, 2\}$ and let t be the smallest such j. In this case, let

$$\varphi(u) = \varphi(u_1^t w_1^{3r+2} u_{t+4}^{3s+2}, i).$$

Because $|(u_1^t w_1^{3r+2} u_{t+4}^{3s+2}, i)| < |u|$ it follows that $\varphi(u)$ is well defined, and moreover, (1) and (2) imply that $\varphi(u) \neq u, |\varphi(u)| < |u| \text{ and } \varphi(\varphi(u)) = \varphi(u).$ (iii) If $\varphi(u)$ can't be defined by (i) or (ii), let $\varphi(u) = u$. In this case, $\varphi(\varphi(u)) = \varphi(u) = u$ and $|\varphi(u)| = |u|$. The above discusion and (i), (ii) and (iii) complete the inductive step, and so we have defined a map $\varphi: \overline{B} \to \overline{B}$. Moreover, we have proved the folloing: **Lemma**: (a) For $b \in B$, $\varphi(b) = b$; (b) For each $u \in \overline{B}$, $|\varphi(u)| \le |u|$; (c) For $u \in \overline{B}$, if $\varphi(u) \neq u$, then $|\varphi(u)| < |u|$; (d) For each $u \in \overline{B}$, $\varphi(\varphi(u)) = \varphi(u)$. Now, let $Q = \varphi(\overline{B})$. By Lemma (d), $O = \{u \mid u \in \overline{B}, \varphi(u) = u\}.$ Define a map $[]: Q^5 \rightarrow Q^2$, by $[u_1^5] = (v_1^2)$ $\Leftrightarrow v_i = \varphi(u_1^5, i)$ for each $i \in \{1, 2\}$. Because $u_i \in Q$, it follows that $(u_1^5, i) \in \overline{B}$, and so $\varphi(u_1^5, i) \in Q$ for each $i \in \{1, 2\}$. Hence [] is well defined. **Theorem**: (Q, []) is a free (5,2)- semigroup with a basis В Let $(S, (B, \{\}), f)$ be a (5,2)-semigroup automaton. Now, we define a sequence of maps $\psi_0, \psi_1, \dots, \psi_p, \psi_{p+1}, \dots$ for a sequence of sets $B_0, B_1, \dots, B_n, B_{n+1}, \dots$ by induction as follows: $\psi_0: B_0 \to B_0$ with $\psi_0(b) = b$, for each $b \in B_0$; $\psi_1: B_1 \rightarrow B_0$ with $\psi_1(b_1^n, i) = \{b_1^n\}_i$; $\psi_2: B_2 \to B_0$ with $\psi_2(u_1^n, i) = \{\psi_1(u_1) \dots \psi_1(u_n)\}_i$ $\psi_n: B_n \to B_0$ with $\psi_{n}(u_{1}^{n},i) = \{\psi_{n-1}(u_{1})...\psi_{n-1}(u_{n})\}_{i}$ Because $\overline{B} = \bigcup_{p>0} B_p$, we define a map $\psi : \overline{B} \to B_0$ with $\psi(u) = \psi_p(u)$ for $u \in \overline{B}$ and $|u| \le p$. Now we will prove

that ψ is well defined. If

$$u = (u_1^r (w_1^{2+3s}, i_1)(w_1^{2+3s}, i_2)u_{r+3}^{2+3t}, i),$$

$$v = (u_1^r w_1^{2+3s} u_{r+3}^{2+3t}, i)$$

and $\varphi(u) = \varphi(v)$, we have to prove that $\psi(u) = \psi(v)$. We have

$$\psi(u) = \psi_n(u) =$$

$$= \psi_{p}(u_{1}^{r}(w_{1}^{2+3s}, i_{1})(w_{1}^{2+3s}, i_{2})u_{r+3}^{2+3t}, i) =$$

$$= \{\psi_{p-1}(u_{1})...\psi_{p-1}(u_{r})\psi_{p-1}(w_{1}^{2+3s}, i_{1})\psi_{p-1}(w_{1}^{2+3s}, i_{2})$$

$$\psi_{p-1}(u_{r+3})...\psi_{p-1}(u_{2+3t})\}_{i} =$$

$$= \{\psi_{p-1}(u_{1})...\psi_{p-1}(u_{r})\{\psi_{p-2}(w_{1})...\psi_{p-2}(w_{2+3s})\}_{i_{1}}...$$

$$\{\psi_{p-1}(w_{1})...\psi_{p-2}(w_{2+3s})\}_{i_{2}}\psi_{p-1}(u_{r+3})...\psi_{p-1}(u_{2+3t})\}_{i} =$$

$$= \{\psi_{p-1}(u_{1})...\psi_{p-1}(u_{r})\psi_{p-1}(w_{1})...\psi_{p-1}(w_{2+3s})\}_{i_{2}}...$$

Also,

$$\psi(v) = \psi_{p}(v) = \psi_{p}(u_{1}^{r}w_{1}^{2+3s}u_{r+3}^{2+3t}, i) =$$

$$= \{\psi_{p-1}(u_{1})...\psi_{p-1}(u_{r})\psi_{p-1}(w_{1})...\psi_{p-1}(w_{2+3s})$$

$$\psi_{p-1}(u_{r+3})...\psi_{p-1}(u_{2+3t})\}_{i}.$$

Hence $\psi(u) = \psi(v)$. On the other hand, $Q = \varphi(\overline{B})$, so it follows that the restriction of ψ on Q is well defined.

Now again, we define a sequence of maps $\tau_0, \tau_1, ..., \tau_p, \tau_{p+1}, ...$ for a sequence of sets $B_0, B_1, ..., B_p, B_{p+1}, ...$ by induction as follows: $\tau_0: S \times B_0^4 \longrightarrow S \times B_0$ with $\tau_0(s, x_1^4) = f(s, x_1^4)$;

$$\tau_{1}: S \times B_{1}^{4} \to S \times B_{1} \text{ with}$$

$$\tau_{1}(s, (u_{11}^{1\alpha_{1}}, i_{1}), (u_{21}^{2\alpha_{2}}, i_{2}), (u_{31}^{3\alpha_{2}}, i_{3}), (u_{41}^{4\alpha_{4}}, i_{4})) =$$

$$f(s, \psi_{1}(u_{11}^{1\alpha_{1}}, i_{1}), \psi_{1}(u_{21}^{2\alpha_{2}}, i_{2}), \psi_{1}(u_{31}^{3\alpha_{3}}, i_{3}), \psi_{1}(u_{41}^{4\alpha_{4}}, i_{4}))$$

$$\begin{aligned} \tau_2 : S \times B_2^4 &\to S \times B_2 \text{ with} \\ \tau_2(s, (u_{11}^{1\alpha_1}, i_1), (u_{21}^{2\alpha_2}, i_2), (u_{31}^{3\alpha_3}, i_3), (u_{41}^{4\alpha_4}, i_4)) = \\ f(s, \psi_2(\overline{u}_{11}^{1\alpha_1}, i_1), \psi_2(\overline{u}_{21}^{2\alpha_2}, i_2), \psi_2(\overline{u}_{31}^{3\alpha_3}, i_3), \psi_2(\overline{u}_{41}^{4\alpha_4}, i_4)) \end{aligned}$$

$$\begin{aligned} \tau_{p} &: S \times B_{p}^{4} \to S \times B_{p} \text{ with} \\ \tau_{p} &(s, (u_{11}^{1\alpha_{1}}, i_{1}), (u_{21}^{2\alpha_{2}}, i_{2}), (u_{31}^{3\alpha_{3}}, i_{3}), (u_{41}^{4\alpha_{4}}, i_{4})) = \\ f &(s, \psi_{p}(\overline{u}_{11}^{1\alpha_{1}}, i_{1}), \psi_{p}(\overline{u}_{21}^{2\alpha_{2}}, i_{2}), \psi_{p}(\overline{u}_{31}^{3\alpha_{3}}, i_{3}), \psi_{p}(\overline{u}_{41}^{4\alpha_{4}}, i_{4})) \\ \vdots \end{aligned}$$

Now we define a map τ for the sequence of maps $\tau_0, \tau_1, ..., \tau_p, \tau_{p+1}, ...$ by $\tau : S \times \overline{B}^4 \to S \times \overline{B}$, so that $\tau \mid_{B_p} = \tau_p$ and $\tau(s, (u_{11}^{1\alpha_1}, i_1), (u_{21}^{2\alpha_2}, i_2), (u_{31}^{3\alpha_3}, i_3), (u_{41}^{4\alpha_4}, i_4)) =$ $\tau_p(s, (u_{11}^{1\alpha_1}, i_1), (u_{21}^{2\alpha_2}, i_2), (u_{31}^{3\alpha_3}, i_3), (u_{41}^{4\alpha_4}, i_4)) =$ $f(s, \psi_p(u_{11}^{1\alpha_1}, i_1), \psi_p(u_{21}^{2\alpha_2}, i_2), \psi_p(u_{31}^{3\alpha_3}, i_3), \psi_p(u_{41}^{4\alpha_4}, i_4)) =$ $f(s, \psi(u_{11}^{1\alpha_1}, i_1), \psi(u_{21}^{2\alpha_2}, i_2), \psi(u_{31}^{3\alpha_3}, i_3), \psi(u_{41}^{4\alpha_4}, i_4)).$ Because ψ is well defined, it follows that τ is well defined. On the other hand, $Q = \varphi(\overline{B})$ so $\overline{\varphi}$ denotes the map $\overline{\varphi} : S \times Q^4 \to S \times Q$ defined by

$$\begin{split} \overline{\varphi}(s,(u_{11}^{1\alpha_1},i_1),(u_{21}^{2\alpha_2},i_2),(u_{31}^{3\alpha_3},i_3),(u_{41}^{4\alpha_4},i_4)) &= \\ &= \tau(s,(u_{11}^{1\alpha_1},i_1),(u_{21}^{2\alpha_2},i_2),(u_{31}^{3\alpha_3},i_3),(u_{41}^{4\alpha_4},i_4)) = \\ &= f(s,\psi(u_{11}^{1\alpha_1},i_1),\psi(u_{21}^{2\alpha_2},i_2),\psi(u_{31}^{3\alpha_3},i_3),\psi(u_{41}^{4\alpha_4},i_4)) \,. \\ &\text{Moreover, } (S,(Q,[]),\overline{\varphi}) \text{ is a (5,2)-semigroup automaton,} \\ &\text{where } (Q,[]) \text{ is a free (5,2)-semigroup with a basis } B \,. \end{split}$$

IV. RECOGNIZABLE (5,2)-LANGUAGES

Any subset $L^{(5,2)}$ of the universal language $Q^* = \bigcup_{p \ge 1} Q^p$,

where Q is a free (5,2)-semigroup with a basis B, is called **a** (5,2)-language (formal (5,2)-language) on the alphabet B.

A (5,2)-language $L^{(5,2)} \subseteq Q^*$ is called **recognizable** if there exists:

(1) a (5,2)-semigroup automaton $(S, (B, \{\}), f)$, where the set S is finite;

(2) an initial state $s_0 \in S$;

(3) a subset $T \subseteq S$ such that

 $L^{(5,2)} = \{ w \in Q^* \mid \overline{\varphi}(s_0, (w,1), (w,2)) \in T \},\$

where $(S, (Q, []), \overline{\varphi})$ is the (5,2)-semigroup automaton constructed above, for the (5,2)-semigroup automaton $(S, (B, \{\}), f)$.

We also say that the (5,2)-semigroup automaton $(S, (B, \{ \}), f)$ recognizes $L^{(5,2)}$, or that $L^{(5,2)}$ is recognized by $(S, (B, \{ \}), f)$.

Example 3: Let $(S, (B, \{ \}), f)$ be a (5,2)-semigroup automaton given in Example 2. We construct the (5,2)semigroup automaton $(S, (Q, []), \overline{\varphi})$ for the (5,2)semigroup automaton $(S, (B, \{ \}), f)$.

A (5,2)-language $L^{(5,2)}$, which is recognized by the (5,2)semigroup automaton $(S, (Q, []), \overline{\varphi})$, with initial state s_0 and terminal state (s_1, a) is

$$L^{(5,2)} = \{ w \in Q^* \mid w = w_1 w_2 \dots w_q, \quad q \ge 5, \text{ where} \\ w_l = \begin{cases} (u_1^n, i), & n \ge 5, u_\alpha \in Q \\ (a^* b^*)^* & l \in \{1, 2, \dots, q\}, \text{ and}: \end{cases}$$

a) If i = 1, then:

a1)
$$(u_1^n, 1) = a$$
, where

$$\psi_{p-1}(u_1)...\psi_{p-1}(u_n) = a(a \cup b)(a^r b^r a^n)^*,$$

a2) $(u_1^n, 1) = b$, where

$$\psi_{p-1}(u_1)...\psi_{p-1}(u_n) = b(a \cup b)(a^t b^l a^h)^*$$

b) If i = 2, then:

b1) $(u_1^n, 2) = a$, where $\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n) = (a \cup b)a(a^t b^l a^h)^*$, b2) $(u_1^n, 2) = b$, where

$$\Psi_{p-1}(u_1)...\Psi_{p-1}(u_n) = (a \cup b)b(a^t b^l a^h)^*,$$

and $\Psi_p(w_1)...\Psi_p(w_q) = (a \cup b)a(a \cup b)^2(a^t b^l a^h)^*$, for t + l + h = 3k, $t, l, h \in \{0, 1, 2, ...\}$, $k \ge 1$, q = 3k + 4.

4.1° Let $L^{(5,2)}$ be a (5,2)-language on the set B recognized by (5,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$. Let $(S, (Q, []), \overline{\varphi})$ be a (5,2)-semigroup automaton with initial state s_0 and a set of terminal states $T \times C \subseteq S \times B$. Then $x \widetilde{L}^{(2,1)} c \subseteq L^{(5,2)}$ for each $x \in Q$ and for any language $L^{(2,1)}$, which is recognized by the semigroup automaton $(S \times Q, (Q^2, *_c), \psi)$ with an initial state $s'_0 = (s_0, x)$, a set of terminal states $T \times C$, where $\psi : S \times Q \times Q^2 \to S \times Q$ is a transition function defined by $\psi((s, x), y_1^2) = \overline{\varphi}(s, x, y_1^2, c)$ for $c \in Q^p$ and p is the least non-negative integer, such that $2 + p \equiv 0 \pmod{3}$, and $\widetilde{L}^{(2,1)} = \{\widetilde{w} \mid w \in L^{(2,1)}\}$.

Proof: $L^{(5,2)}$ is a recognizable (5,2)-language on the set Bby the (5,2)-semigroup automaton $(S, (Q[]), \overline{\varphi})$ with an initial state s_0 and a set of terminal states $T \times C \subseteq S \times B^{n-t}$, so $L^{(5,2)} = \{w \in Q^* \mid w = w_1 w_2 \dots w_{3q+4}, q \ge 1 \text{ and}$ $\overline{\varphi}(s_0, (w_1^{3q+2}, 1), (w_1^{3q+2}, 2), \psi_{p-1}(w_{3q+3}), \psi_{p-1}(w_{3q+4})) =$ $\overline{\varphi}(s_0, \psi_{p-1}(w_{p-1}, 1), (w_{p-1}^{3q+3}, 2), \psi_{p-1}(w_{p-1}, 1)) =$

$$\overline{\varphi}(s_0, \psi_{p-1}(w_1), \psi_{p-1}(w_2), (w_3^{3q+4}, 1), (w_3^{3q+4}, 2)) \in T \times C \}.$$

By Proposition 2.2⁰, $(S \times Q, (Q^2, *_c), \psi)$ is a semigroup automaton. It recognizes a language $L^{(2,1)}$ with a set of initial states $s'_0 = (s_0, x)$ and a set of terminal states $T \times C$, so it is of the form

$$\begin{split} L^{(2,1)} &= \{ w \in (Q^2)^* \mid \psi(s'_0, w) \in T \times C \}. \\ \text{Let } w \in L^{(2,1)} \text{. It follows that } w \in (Q^2)^* \text{ and} \\ \psi(s'_0, w) \in T \times C \text{ . But } s'_0 &= (s_0, x), \text{ so} \\ \overline{\varphi}(s_0, x, (\widetilde{w}, 1), (\widetilde{w}, 2), c) &= \overline{\varphi}(s_0, x, w, c) = \\ &= \psi((s_0, x), w) = \psi(s'_0, w) \in T \times C \end{split}$$

Thus $x \widetilde{w} c \in L^{(5,2)}$, i.e. $x \widetilde{L}^{(2,1)} c \subseteq L^{(5,2)}$.

4.2° Let $L^{(2,1)}$ be a recognizable language on the set B by a semigroup automaton $(S, (B, \| \|), \xi)$ with an initial state $s_0 \in S$ and a set of terminal states $T \subseteq S$, and $(S, (B, \{ \}), f)$ be an (5,2)-semigroup automaton constructed by a semigroup automaton $(S, (B, \| \|), \xi)$. Let $f: S \times B^4 \to S \times B$ is a transition function defined by $f(s, x_1^4) = (\xi(s, \|x_1^3\|), x_4)$. Then $L^{(2,1)}a \subseteq L^{(5,2)}$, for each $a \in B$, where $L^{(5,2)}$ is a recognizable (5,2)-language on the set B by the (5,2)-semigroup automaton $(S, (Q, [\]), \overline{\varphi})$ with an initial state $s_0 \in S$ and a set of terminal states $T \times \{a\}$.

Proof: A language $L^{(2,1)}$ is recognizable by a semigroup automaton $(S, (B, \| \|), \xi)$ with initial state $s_0 \in S$ and a set of terminal states $T \subseteq S$, so

 $L^{(2,1)} = \{ w \in B^* \mid \xi(s_0, w) \in T \}.$

By Proposition 2.1⁰, $(S, (B, \{ \}), f)$ is a (5,2)-semigroup automaton. We construct an (5,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$, where $Q = \varphi(\overline{B})$ and $\overline{\varphi} : S \times Q^4 \rightarrow S \times Q$ is a transition function defined by $\overline{\varphi}(s, (u_{11}^{1\alpha_1}, i_1), (u_{21}^{2\alpha_2}, i_2), (u_{31}^{3\alpha_3}, i_3), (u_{41}^{4\alpha_4}, i_4)) =$ $= f(s, \psi_p(u_{11}^{1\alpha_1}, i_1), \psi_p(u_{21}^{2\alpha_2}, i_2), \psi_p(u_{31}^{3\alpha_3}, i_3), \psi_p(\overline{u}_{41}^{4\alpha_4}, i_4))$. It follows that a recognizable (5,2)-language $L^{(5,2)}$ on the

It follows that a recognizable (5,2)-language $L^{(n)}$ on the set B by (5,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$, with initial state $s_0 \in S$ and a set of terminal states $T \times \{a\}$ is of the form

$$L^{(5,2)} = \{ w \in Q^* \mid w = w_1 w_2 \dots w_{3q+4}, q \ge 1 \text{ and } \}$$

$$\begin{split} \overline{\varphi}(s_0, (w_1^{3q+2}, 1), (w_1^{3q+2}, 2), \psi_{p-1}(w_{3q+3}), \psi_{p-1}(w_{3q+4})) &= \\ &= \overline{\varphi}(s_0, \psi_{p-1}(w_1), (w_2^{3q+3}, 1), (w_2^{3q+3}, 2), \psi_{p-1}(w_{3q+4})) = \\ &= \overline{\varphi}(s_0, \psi_{p-1}(w_1), \psi_{p-1}(w_2), (w_3^{3q+4}, 1), (w_3^{3q+4}, 2)) \in T \times C \}. \\ &\text{Let } w \in L^{(2,1)}, \ |w| \ge 3q+3 \text{ i.e. } w = w_1^{3q+3}, \ q \ge 1 \text{ and} \\ &a \in B \text{ . Then} \\ &\overline{\varphi}(s_0, (w_1^{3q+2}, 1), (w_1^{3q+2}, 2), \psi_{p-1}(w_{3q+3}), a) = \\ &= \overline{\varphi}(s_0, (w, a)) = (\xi(s_0, w), a) \in T \times \{a\}. \end{split}$$
Thus $wa \in L^{(5,2)}, \text{ i.e. } L^{(2,1)}a \subset L^{(5,2)}. \blacksquare$

V. CONCLUSION

The results was given in this paper, are of the scientific interest, because there was defined a (5,2)-languages as a consequence of the generalization of the semigroup automata in case (5,2). Also, here was given the conection between (2,1)-languages and (5,2)-languages.

REFERENCES

- [1] D.Dimovski, "Free Vector Valued Semigroups", *Proc. Conf. "Algebra and Logic"*, Cetinje, (1986), 55-62
- [2] Čupona G., Celakovski N., Markovski S., Dimovski D. "Vector Valued Groupoids, Semigroups and Groups", *Maced. Acad. Sci. and Arts*, Skopje (1988), pp. 3-73
- [3] Trenčevski K., Dimovski D. "Complex Commutative Vector Valued Groups", *Maced. Acad. Sci. and Arts*, Skopje (1992)
- [4] D.Dimovski, V.Manevska, "Vector Valued (*n+k*)-Formal Languages", *Proc. 10th Congress of Yugoslav Mathematicians*, Belgrade, (2001), 153-159
- [5] V.Manevska, D.Dimovski, "Properties of the (3,2)-Languages Recognized by (3,2)-Semigroup Automata", *MMSC*, Borovets, (2002), 368-373