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The Realization of the Distributed 
Computer Chess System 

Vladan Vučković  

 
Abstract - This paper is concerned with the implementation of 

the asynchronous parallel search algorithm using distributed 
local network. The original solution is implemented and tested in 
author's chess application Axon. The standard approaches of 
parallelism use dual and quad server PC machine, which is 
expensive and rare compared with classical single processor PC 
machines. The author’s solution introduces a new class of simple 
and efficient algorithm of the parallelisation, using standard 
single processor units connected via local 100Mb or 1Gbit 
networks. Compared with single processor search algorithms, 
the parallel algorithm significantly increases performance in test 
suites and practical play. 

Keywords - Computer chess, search algorithms, parallel 
computing, local area networks. 

I. INTRODUCTION 

The theory of computer chess is complex connecting many 
sub-domains like theory of games, decision trees, and theory 
of programming, operation research, and optimization. The 
nature of the computer chess could be explained very simply: 
namely, decision tree that is the base of machine chess-
playing algorithm grows exponentially with factors depending 
of position, hash tables, number of pieces on the board…If we 
suppose that on the first level of the decision tree one has 
node with 30 exists, on the second level it will be 302=900 
nodes, on the third 303 it will be 27000 etc. It is obvious that 
number of nodes, also with processing time depends 
exponentionaly of the level (depth) of the search tree. In 
theory, that effect is called combinational explosion. On the 
other hand, the quality of computer play strongly depends on 
depth of the decision tree so the effect of the exponential 
explosion limits the computer chess strength. 

  There are generally two approaches to overcome this 
problem: Shannon-type-A (full-width approach)  and 
Shannon-type-B (selective search) [1]. The first one tries to 
solve the problem by using the simple pruning mechanisms 
based on Alfa-Beta technique with idea to decrease maximally 
the time needed to compute one single node.  

This approach benefits maximally of the rapidly increasing 
speed of the modern CPU-s and also incorporates standard 
(cluster) parallelisation (IBM Deep Blue). The second 
approach (Type-B) is concentrate on heuristic pruning based 
on relatively extensive portion of knowledge, direct 
programmed into the evaluation or move generator function. 
This approach is very depended on the programmer skill and 
the quality of the implemented pruning, so the results could be 
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very relative. On today’s level of knowledge in this area, the 
best combination is to use near full-width approach in main 
searcher, and selective searcher in q-search procedure. The 
algorithms could be combined: Alpha-Beta, Null Move and 
PVS (NegaScout). 

This paper has intention to investigate the other possibilities 
of computer chess strength increasing using parallelism if the 
other techniques are well implemented. The main pruning 
method is Alfa-Beta and it is implemented in author's Axon 
application with some technical improvements. The results of 
tests prove that the implementation of the pruning technique is 
able to cut the large parts of the tree improving the computer 
playing strength notably. 

II. STANDARD PARALLEL CHESS MACHINES 

The standard research parallel chess machines are 
developed on several universities, as the stand alone 
applications or a part of some general parallel algorithm 
design: 
 

 Chess on Massively Parallel Systems at University of 
Paderborn,  

 Parallel Computing Works at CalTech, 
 CilkChess Parallel Chess Program at MIT [2],  
 International Computer Chess Association.  

 
The main characteristics of two leading parallel chess 
architectures will be presented in this section. 

2.1  DEEP BLUE 

Probably, the most important parallel chess machine was 
developed by the IBM Company, named IBM Deep Blue [3].  
Deep Blue Computer is implemented as a 32-node IBM 
RS/6000 SP high-performance computer. Each node has a 
single micro channel card that contains 8 individual VLSI 
chess processors (specially designed IC's for chess 
computations). The total processing of the systems utilizes 
256 chess processors and can evaluate 200,000,000 positions 
per second. The software was coded in C under the IBM AIX 
system. The system utilizes the MPI (message passing) 
method of parallalization that is standard for the IBM SP 
Parallel systems. This method can work well for this 
application since the data required for processing is relatively 
small and can be easily (and cheaply) replicated among the 
processors. Primarily communication between the processors 
is limited to delegate which processors examine which 
portions of the tree of possible moves (each level represents 
one player's move, so the root would have all the possible 
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moves one player could make, the next level would have the 
moves in response by the other player). Software determines a 
set of tactics/moves to explore and then determines likely 
outcomes and the goodness of them. Since chess is a complex 
game and the number of moves (and the moves that follow 
that, etc) is incredibly enormous, true brute force is not used. 
Highly unlikely moves are eliminated from further 
consideration (such as putting the king in checkmate). The 
original algorithm used is based on the alpha-beta algorithm. 
The system passes messages between all the processors and 
each processor works on a set of possible moves. Since each 
processor is examining a different set of moves, it is likely 
that parallel processing is applicable. 

The following graph was compiled from information on the 
IBM website, but since the information was scattered, it 
should only be used as an approximation of true performance.  
 

 
Fig. 1. The influence of parallelization to the CPP factor 

 
The graph displays the number of chess positions per second 
that are computed. This is analogous to determining the 
goodness of a position and with some unlisted constant could 
be converted to operations per second metric. The line 
representing the positions per second per chess processor is 
calculated by dividing the total equally over the number of 
chess processors. This is just an average number, and may not 
be accurate. It is possible that one or more of the chess 
processors (but not all) are doing more work than others.  

Obviously the number of calculations per second increases 
with time due to advances in chip technology and algorithm 
enhancements, but the overall enhancement of the system out 
performs Moore's law applied to one processor, leading to the 
conclusion that parallel computing was successful. It also 
appears that after 1988 there was a slight decrease in position 
per second, this is probably due to the overhead of parallel 
computation, but still allowed the overall performance of the 
machine to increase. Unfortunately data regarding the raw 
power of each processor running alone was not available to 
evaluate a true speedup performance. IBM estimates that for a 
single computer to analyze the same number of positions per 
second would need to run at about 1 Terahertz. IBM reports 
that the current Deep Blue system has a parallel efficiency of 
around 30%.  

 
 
 

2.2   CILKCHESS 

Cilkchess (developed on MIT university) is a complete 
rewrite of the previous chess program (Socrates). The parallel 
search algorithm uses a form of Jamboree-search to control 
parallel search overhead: at each node the first successor is 
searched serially. If it does not cause a cutoff, the remaining 
successors are searched in parallel. The transposition table is 
stored in 32 gigabytes of shared memory. Entries are not 
locked. (Although this goes against common parallel 
programming practice, it certainly is fast and seems to work 
well in practice.) In the late middle game, Cilkchess typically 
looks more than 15 ply (half moves) ahead and performs 5-11 
million make-moves per second on a 256-processor SGI 
Origin 2000. The evaluation function is built for speed, uses 
only knowledge, which is known to work, few extensions, and 
null-move based forward pruning. In the latest version, the 
weights of the evaluation function are tuned using a temporal-
coherence learning algorithm. 

III. IMPLEMENTATION 

The standard author’s version of chess program Axon was 
modified, using relatively simply method of parallelization. 
The experimental parallel system use two PC computers, 
which are connected via local 100 Mb network The program 
was parallelized using master-slave methodology. Two 
identical programs use identical hardware are identical, but 
they compute different branches of the decision tree.  Also, 
human operator has control only on the master machine where 
is possible to change position using standard Windows 
interface. In the phase of computing, master send small pack 
of date using distributed connection. The packet contains 
current position, flags, game history and list of moves for the 
processing on the slave unit. The key problem is how to split 
the total list of moves, to achieve optimal ballast of the 
processor strength in this multiprocessor environment. The 
presumption is that the speed (measured by the Axon 
Benchmark 4 hardware test) must be approximately equal. To 
demonstrate our solution assume that the current position 
given on the following diagram (Figure 2):  

 
Fig. 2. AXON I    Parallel version of program 
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The position is resumed from the grandmaster game - key 
move is winning Ng6!. When we analyze this position using 
Axon Evaluation Tester [4], the following list of legal moves 
was generated: 

0.  H4H8  ->      % . + . . . . . a . r . p # i t     (<--) 
1.  H3E6  ->      % . . c . d . f a q . n p . . t     (<--) 
2.  H4F4  ->      . s . . . d . . a . . n p . i t     (1) 
3.  H4G5  ->      . s . . . . . . a . . n p # i t     (2) 
4.  E5C4  ->      . s . . . . . . a . . n p . i .     (<--) 
5.  E5G4  ->      . s . . . . . . a . . n . # . .     (1) 
6.  F2F4  ->      . s . . . . . . a . . n . . i t     (<--) 
7.  A1C1  ->      . s . . . . . . a . . . p . i t     (<--) 
8.  H3G2  ->      . s . . . . . . a . . . p . i t     (1) 
9.  E1E3  ->      . s . . . . . . a . . . p . . t     (<--) 
10.  H3F5  ->      . s . . . . . . a . . . . # . t     (2) 
11.  E1E2  ->      . s . . . . . . a . . . . . . t     (1) 
12.  A1D1  ->      . s . . . . . . a . . . . . . t     (1) 
13.  E1C1  ->      . s . . . . . . . . . . p . i .     (2) 
14.  B2C3  ->      . s . . . . . . . . . . p . i .     (<--) 
15.  H3G4  ->      . s . . . . . . . . . . . # . t     (3) 
16.  G3G4  ->      . s . . . . . . . . . . . # . t     (<--) 
17.  G1F1  ->      . s . . . . . . . . . . . . . t     (<--) 
18.  A3A4  ->      . s . . . . . . . . . . . . . t     (<--) 
19.  G1H2  ->      . s . . . . . . . . . . . . . t     (1) 
20.  G1G2  ->      . s . . . . . . . . . . . . . t     (2) 
21.  A1A2  ->      . s . . . . . . . . . . . . . t     (2) 
22.  A1B1  ->      . s . . . . . . . . . . . . . t     (3) 
23.  F2F3  ->      . s . . . . . . . . . . . . . t     (1) 
24.  G1H1  ->      . s . . . . . . . . . . . . . .     (3) 
25.  E1B1  ->      . s . . . . . . . . . . . . . .     (3) 
26.  B2C1  ->      . s . . . . . . . . . . . . . .     (1) 
27.  E1D1  ->      . s . . . . . . . . . . . . . .     (4) 
28.  E5D3  ->      . s . . . . . . . . . . . . . .     (2) 
29.  E1F1  ->      . s . . . . . . . . . . . . . .     (5) 
30.  E5F3  ->      . s . . . . . . . . . . . . . .     (3) 
31.  H3F1  ->      . s . . . . . . . . . . . . . .     (4) 
32.  H4H7  ->      . . + . . d . . a . . . p # i t     (3) 
33.  H4F6  ->      . . . c . d . f a . r n p # i t     (4) 
34.  E5F7  ->      . . . c . . . . a . r n p # i .     (4) 
35.  E5C6  ->      . . . c . . . . a . r . p # i .     (5) 
36.  D4D5  ->      . . . . m d . f a . . n p # . t     (<--) 
37.  H4E4  ->      . . . . . d . f a . . n p # i t     (5) 
38.  H4H5  ->      . . . . . d . . a . . n p # . t     (6) 
39.  H4H6  ->      . . . . . . . f a . . n p # i t     (7) 
40.  H4G4  ->      . . . . . . . f . . . n p # i t     (8) 
41.  E5D7  ->      . . . . . . . . a . . n . # . .     (6) 
42.  E1E4  ->      . . . . . . . . a . . . . # . t     (6) 
43.  E5G6  ->      . . . . . . . . . . . . . # . .     (7) 

The list of moves is sorted and displayed together with their 
characteristically bits (weights.) The basic rule for 
parallelization on two machines is to divide this list in two 
sub-lists. The first sub-list contains move with EVEN indexes 
(0. H4H8, 2. H4F4, 4. E5C4 ...) and the second list incloses 
moves with ODD indexes (1. H3E6, 3. H4G5, 5. E5G4 …). 
After that, each sub-list is distributed to corresponding 
processor. In the phase of computing, each processor works 
on different set of moves, so the parallelization is achieved. 

IV. EXPERIMENT AND TEST RESULTS 

To determine the factor of parallel efficiency of the new 
method, the experiment was carried out. The standard EPD  
test was used (yazgac.epd). Otherwise the EPD tests are 
commonly used as the benchmark tests for computer chess 
algorithms. They contents serious of test chess positions also 
with key moves. 

The experiment consists of 3 phases. First, test will be 
performing on single processors on depth 7 each position. For 
the experiment, the PC with AMD Sempron 2600+ processor/ 
256 Mb Ram/ 50 Mb Hash will be used. After that, the same 
experiment will be performed on two machines working 
parallel, also with same hardware. The goal of the experiment 
will be to represent the acceleration of the best move 
searching on parallel machine compared to single-processor 
one. The experimental date could be systematized in the 
following table (Table 1). This table indicates that parallel 
system always found key moves faster (in less number of 
positions). The percentage of acceleration and the processor, 
which computes key move could not be, determine exactly, it 
is very dependent of the analyzed position. The theoretical 
reasons for these empiric conclusions are connected with the 
fact that the search tree is divided in two branches. Each sub-
tree contains less elements then full tree, which is also 
dependent on position. For instance, in raw 30, total tree 
search on key move Re4 for the single processor holds 
40308515 positions. The second (slave) processor, which 
found the right solution, processed only 28140075 nodes, that 
is 69.8% of full tree. 

 
 

 

 
 
 

TABLE I 
TABLE SHOWS NUMBER OF POSITIONS GENERATED WITH SINGLE AND DUAL SYSTEM ON DEPTH 7. 

 
 Single  Master  Slave  
1 Bh7 728249 Bh7 717922 bxc3 596521 
2 Rxg7 1466745 Rxg7 759523 Qd3 1512966 
3 Rd4 1469002 Be7 1031013 Rd4 1525525 
4 Nc5 1555512 Nxf6 10863177 Ng5 1564616 
5 Bd6 1388059 Bd6 2597391 Rf1 1381623 
6 Rc1 276446 Rf4 497102 Rc1 201065 
7 Qd8 84001 Qd3 9823036 Qd8 56237 
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8 Qc7 10527566 Qc7 9189599 Bxf7 2148993 
9 Qxg6 4963938 Qh3 5771366 Qxg6 3760483 
10 Nh4 16605243 Nh4 15273693 Bg5 25709788 
11 Ne5 3689251 Rh8 12246408 Ne5 2188589 
12 O-O-O 37440614 O-O-O 32279825 Qa4 32454430 
13 Qxh3 2050870 dxc4 19446143 Qxh3 1711382 
14 Nxb8 1115403 Nxb8 1032344 Qd3 1335819 
15 Bxg7 14547957 Bxg7 6283498 Bg5 10789489 
16 a4 23997961 a4 22423349 h4 15604024 
17 f5 2159123 f5 2076168 Nxd5 1212576 
18 Qxg5 2690807 e5 12102548 Qxg5 2382803 
19 Nc4 1466950 Nb5 3312836 Nc4 839488 
20 Nc3 10621431 Nc3 7965793 Ra5 13809770 
21 Kc3 346605 Kc3 196995 Kc2 177727 
22 Bxe2 2965166 Rh2 2151353 Bxe2 1580737 
23 h7 724166 h7 487909 Bc6 5719170 
24 Rxh3 2243812 Rxh3 2138494 Rg3 7257178 
25 c4 4190791 c4 2969132 h4 4569494 
26 Rxd7 2520953 Rxd7 2032580 Bg3 25238813 
27 Qxc6 14345697 Ne1 12422980 Qxc6 1243715 
28 Kh2 7423320 Kh2 5258905 Qxa7 3803816 
29 Rxf4 2872671 Qxf4 527141 Rxf4 2754258 
30 Re4 40308515 Qh5 14897082 Re4 28140075 
31 cxb5 4005703 cxb5 2622334 Rd1 3001105 
32 Re1 8435525 Re1 5680953 Rd1 11814379 
33 Qe2 2447903 Qe2 2128323 Rf3 2928657 

 

V. CONCLUSION 

The distributed computer chess system presented in this 
paper runs on two PCs with AMD Sempron 2600+ processors 
connected via 100Mb local area network. The software 
component is developed around the Axon I chess engine. The 
EPD test performed in this paper proves that parallel machine 
finds key moves faster in every case compared to single 
processor one. This conclusion may be generalized, so in 
practical testing or playing mode dual machine reacts more 
rapidly then the single one. In the future, the author intends to 
expand number of processors and to accommodate software 
for the efficient multi-processor work. 
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