

554

Some Approaches to Inheritance-Based Class Interface
Extension

Ivan S. Veličković1 and Marija D. Cvetković2

Abstract – A brief1 discussion2 of inheritance-based class

interface extension, its properties and applicability will be given
in this paper. Two alternatives will be analysed: an approach
based on multiple inheritance and approach based on nested
classes. These approaches will be compared and possible
application issues will be considered.

Keywords – Design Patterns, Inheritance, Nested Classes

I. INTRODUCTION

The object-oriented approach is today’s most exploited
model for development of large software products. Simple
reuse by means of inheritance and limitations over relations
between entities (objects and classes) imposed by the
encapsulation concept make this method suitable for simple
and reliable integration and debugging of independent
software components developed by different teams of
developers. But a problem remains: following the rules
imposed by object-oriented model doesn’t necessarily lead to
a good, reusable and decoupled solution. For this reason most
modern software development techniques, faced with growing
market and rising customer requirements, depend on reuse of
well-known, well-tested and extendable but comprehensible
object-oriented design solutions, known as Design Patterns
[1].

In the development process of a complex application, user
interactions (use cases) are usually grouped into separate and
independent functional units (components, applications).
These units operate over the same data and offer to a user
another set of possible activities. From a developers point of
view this means the implementation of a different interface for
each independent unit. This burden of unit dependent interface
methods, if placed in the same data implementation class,
could make such a class difficult to maintain and modify. The
solution is to separate universal, unit independent, methods of
the data implementation class from, unit dependant methods.
Different approaches could be used in order to achieve such
goal. This problem is partially addressed by the Bridge design
pattern [1]. Bridge offers a delegation-based solution for
interface separation that is easy to extend, maintain and
modify. Unfortunately, its application is difficult over data
implementation classes (Concrete Implementers) that are,
though inherited from the same base class, very different
conceptually and architecturally. Another approach could be

1 Ivan S. Veličković is with Faculty of Electronics Engineering

Aleksandra Medvedeva 14, 18000 Nis, Serbia and Montenegro, E-
mail: ivanv@elfak.ni.ac.yu

2 Marija D. Cvetković is with Faculty of Electronics
Engineering Aleksandra Medvedeva 14, 18000 Nis, Serbia and
Montenegro, E-mail: cveleglg@bankerinter.net

based on Adapter design pattern. Essentially, “adapting” one
interface to another is what we are trying to achieve. On the
other hand, introduction of a unit dependant interface can vary
not just class external behaviour, but also its inner
implementation. Probably the most intuitive choice could be
the Visitor pattern. From a point of view, suggested solutions
can be treated as an inheritance-based approaches to Visitor
pattern realisation. Both approaches suggested in this paper
offer a possible solution to this problem that cannot be
elegantly solved by direct application of mentioned related
design patterns.

This paper is organised as follows. Next section discusses a
malicious behaviour of software reuse through inheritance. A
method for encapsulation breach by means of friend class
declaration of an inherited class is presented. Section III
contains a brief description of proposed solutions. Finally the
Section IV gives the application example of proposed
methods.

Code samples are given in C++ language and UML
diagrams follow Rational Unified notation.

II. INHERITANCE AND ENCAPSULATION DECAY

Inheritance, polymorphism and encapsulation are
considered as base concepts of object-oriented programming.
These concepts, if properly utilized, are means of safe
software code reuse. The problem of good and safe object-
oriented design relies on thin balance between these concepts.
For the sake of simplicity lets consider the following example.

class CBaseClass
{
public:
 int GetPrivate() {return m_nPrivate;};
protected:
 int m_nProtected;
private:
 int m_nPrivate;
};

class CInheritedClass: public CBaseClass
{
friend class CUserClass; // encapsulation breach
...
};
class CUserClass
{
protected:
 CInheritedClass* pData;
...
};

Code Sample 1. An illustration of encapsulation breach with
inheritance

 By means of public inheritance access to all protected and
public attributes of the parent class is given to all descendants.
However, private members remain class-local, and can be

555

accessed only through public methods of the parent class, if
such methods are available. In previous example such
privileges are given to CInheritedClass. This means that
by using this method of inheritance, children classes could
gain less restrictive access to parent class implementation,
which may result in encapsulation decay [2].

Notice a code line in the previous example that gives a
friend privileges to CUserClass. This way the access to
protected attributes of CBaseClass is given to a class that
doesn’t belong to the same family of classes. Should be
mentioned that private members are still invisible to the
friend-privileged class. This effect partially contradict well-
known phrase that friendship is given, not inherited.

Another infamous inheritance topic is multiple inheritance.
It is a method that can provide privileged access to a class
implementation to another class that doesn’t belong to the
same family of classes. Because of its cumbersome behaviour
this method of code reuse is often discouraged or forbidden by
programming language syntax.

Regardless of the previous discussion proper use of
mentioned techniques can represent a powerful tool.

III. SUGGESTED SOLUTIONS

Figure1 represents an UML class diagram of the multiple-
inheritance-based solution. Abstract class CAbstractImp
with pure virtual methods Operation1() and
Operation2() defines unit (application or component)
independent interface for implementation classes. Each
inherited class implements this interface. On the other hand,
unit specific interface is specified with abstract class
CAppSpecificItfExt. Finally, unit specific concrete
implementation is realized by means of multiple inheritance
from unit specific interface definition class
CAppSpecificItfExt and a corresponding unit
independent concrete implementation class.

 This solution can be realized in C++ through utilization of
abstract classes and multiple inheritance, or in Java with
interfaces and interface implementation. A problem arises if
some additional CAppSpecificItfExt attributes and
related methods need to be implemented. This would not be
possible in Java and it is strongly discouraged in C++.

Figure 2 represents an UML class diagram of nested class
based approach. The implementation class family is the same
as in the previous discussion. Changes are made in unit
specific interface extension classes. A pure virtual Bind()
method is added to the interface of the abstract base class
CAppSpecificItfExt. Purpose of this method is to
enable Visitor-pattern-like biding between interface extension
instance and corresponding implementation class instance.
Implementation of the Bind() method, and a definition of a
nested class inherited from the appropriate implementation
class (classes with “X” prefixed names) are left to
CAppSpecificItfExt child classes. Purpose of those
nested classes is to provide a privileged reference (pointer)
marked as m_pItem. Code Sample 2 describes this idea in
detail. Additional implications are given through code
comments.

CAbstractImp

Operation1()
Operation2()

CConcreteImp1

Operation1()
Operation2()

CConcreteImp2

Operation1()
Operation2()

CAppSpecificItfExt

AdditionalOperation()

CAppSpecicicConcteteImp1

AdditionalOperat ion()

CAppSpecificConcreteImp2

AdditionalOperation()

Figure 1. First solution based on multiple inheritance

CAbstract Imp

Operation1()
Operation2()

CConcreteImp1

Operation1()
Operation2()

CConcreteImp2

Operation1()
Operation2()

CAppSpecificItfExt

Addit ionalOperation()
Bind(pItem : CAbstractIm...

CAppSpecicicConcteteImp1

AdditionalOperation()
Bind(pItem : CAbstractImp*)

XConcreteImp1
(from CAppSpecicicConcteteImp1)

-m_pItem

CAppSpecificConcreteImp2

AdditionalOperation()
Bind(pItem : CAbstractImp*)

XConcreteImp2
(from CAppSpecificConcreteImp2)

-m_pItem

Figure 2. Second solution based on nested friend class definition

///
class CAbstractImp
{
private:
 int m_nParentPrivate;
protected:

556

 int m_nParentProtected;
public:
 virtual enum eType GetType() = 0;
 // unit independent interface declaration
 virtual void Operation1() = 0;
 virtual void Operation2() = 0;
};

///
class CConcreteImp1: public CAbstractImp
{
private:
 int m_nChildPrivate;
protected:
 int m_nChildProtected;
public:
 enum eType GetType() {
 return TYPE_CONCRETE_IMP_1;};
 // unit independent interface implementation
 virtual void Operation1();
 virtual void Operation2();
};

///
class CAppSpecificItfExt
{
public:
 // unit dependant interface declaration
 virtual bool Bind(CAbstractImp* pItem) = 0;
 virtual void AditionalOperation() = 0;
};

///
class CAppSpecificConcreteImp1: public
CAppSpecificItfExt
{
 class XConcreteImp1: public CConcreteImp1
 {
 friend class CAppSpecificConcreteImp1;
 } m_pItem;
 ...
public:
 bool Bind(CAbstractImp* pItem)
 {
 if(pItem->GetType() == TYPE_CONCRETE_IMP_1){
 m_pItem = (XConctreteImp*)pItem;
 return true; // bind success
 }
 m_pItem = NULL;
 return false; // bind failure
 }; // end method Bind()
 void AditionalOperation()
 {
 ...
 // somewhere in the code
 if(m_pItem){
 m_pItem->m_nParentProtected++;
 m_pItem->m_nChildProtected++;

 // following lines would not compile
 // m_pItem->m_nParentPrivate++;
 // m_pItem->m_nChildPrivate++;
 }
 }; // end method AditionalApplication
}; // end class CAppSpecificConcreteImp1

Code Sample 2. Code illustration of the second approach

Method described in Code Sample 1 is utilized by this
approach to gain privileged access to protected members of
implementation classes.

This approach can be implemented in C++ and Java
without significant conceptual changes. Greatest disadvantage
of this method is its complexity. Before manipulation over an
instance of corresponding CConcreteImp an interface
extension class instance should be bond with it. To reduce this
drawback the CAppSpecificItfExt class can be used to
maintain a Flyweight-pattern-like instance pool of interface
extension objects [1]. Code Sample 3 illustrates this idea in

detail. UniversalBind() static method is used to make
binding process more transparent.

class CAppSpecificItfExt
{
 ...
private:
 static CAppSpecificItfExt*
 sm_arrPool[NUM_APP_SPECIFIC_IMPS];
public:
 static CAppSpecificItfExt*
 UniversalBind(CAbstractImp* pItem)
 {
 int index = (int)pItem->GetType();
 sm_arrPool[index]->Bind(pItem);
 return sm_arrPool[index];
 };

 static void CreatePool()
 {
 sm_arrPool[TYPE_CONCRETE_IMP_1] =
 new CAppSpecificConctreteImp1;

 sm_arrPool[TYPE_CONCRETE_IMP_1] =
 new CAppSpecificConctreteImp1;

 };
}

Code Sample 3. Flyweight-like implementation of unit specific
interface object management.

Another possible simplification could be parameterisation
of the CAppSpecificItfExt class. By passing
appropriate X-prefixed class as a type parameter complete
binding process would be placed into
CAppSpecificItfExt class. This approach requires that
global scope should be given to X-prefixed classes, which
may lead to class count explosion and increased ambiguity.

IV. AN APPLICATION EXAMPLE

Both suggested solutions are tested with simulator of
bipedal robot [3]. The simulator is constructed of several
independent components: dynamics simulator, motion planer,
3D environment visualisator, 3D image interpreter and 3D
environment and robot editor. Many of those are designed as
independent applications and some of them communicate over
network.

A coarse classification to editors and consumers can be
adopted over these components. Editors provide user interface
for creation and manipulation over relevant entities and
consumers use these entities to perform required simulation
tasks. Both type of components share the same entities
definitions in form of concrete implementation classes. These
definitions are centralized as independent library, which
simplify debugging, and modification. Extensions of such
definitions are component local. Editors are more user
interface oriented. Their extensions can contain entity specific
user interface objects like dialogs and property pages, and
methods for user interaction events interpretation. On the
other hand, consumer components are more simulation task
oriented. Consumer components extensions are simulation
specific and these extensions can contain simulation helper
methods, methods for cross process/network boundary
communication etc.

Nested classes approach appeared to be more appropriate
for editor components. It is slower, more complex but more

557

intuitive in applications which require heterogeneous and
massive interface extension. Also it is harder to maintain
because some of its repetitive code segments are scattered
over application specific interface extension classes.

Multiple inheritance approach appeared to be faster and
easier to implement. No additional coding and binding is
required, which makes it appropriate interface extension
method for consumer components. However it suffers some
limitation imposed by multiple inheritance.

As a result of immediate binding, both methods are
sensitive to application independent classes modifications.
This could be a great drawback in the early phases of
application development, and great obstacle for further
upgrades. However, because of great architectural differences
no universal interface that would be used to separate class
behaviour and its implementation can be defined.

V. CONCLUSION

This paper discussed two inheritance-based methods for
class interface extension. Some of their advantages and

drawbacks are exposed. Commented code examples are given
to support this review. Both approaches are resulted from a
practical problem proposed by a specific application request.
Although application specific proposed solutions may help to
overcome some general limitations imposed by object-
oriented design process.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns
– Elements of Reusable Object-Oriented Software, Addison
Wesley Longman, 1995.

[2] A. Snyder, “Encapsulation and inheritance in object-oriented
languages”, Object-Oriented Programming Systems, Languages
and Applications Conference Proceedings, Portland, Oregon,
1986.

[3] G. S. Đorđević, N. Vukić, I. Veličković, I. Jovanović, M. Rašić,
M. Vukobratović, “Visually Interactive Robot Simulator”,
TELSIKS 2003 Conference Proceedings, Niš, Serbia and
Montenegro, 2003.

