

589

The First Results of Software Redesign of DKTS 30
Switching System to Support Extended Capacity
Milan Jovanović1, Branko Kolašinović1, Mirko Markov1, Dimitar Komlenović1

Abstract – The first results of work on the software redesign
projects of the DKTS 30 switching system to support extended
capacity were presented in this paper. The extended capacity
switching system had been compared with the original DKTS 30
switching system, and some of the obtained results were given in
this paper.

Keywords – switching system, software redesign,
interprocessor communication.

I. INTRODUCTION

The DKTS 30 public digital telephone exchange [1] is the
newest product from the series of DKTS digital telephone
switching systems. Although it has been successfully
commercially exploited since 1999, it is still under
development in order to:

• achieve better quality,
• provide new services and
• reduce the production price.

Like other modern telephone switching systems it is based
on a large number of off-the-shelf microprocessors and
microcontrollers, that frequently need to communicate with
each other. That means that from this paper’s point of view
the DKTS 30 system represents distributed heterogeneous
multicomputer that works in real time.

The simplified DKTS 30 system architecture was shown in
Figure 1. The goal was to show only blocks taht are necesary
to understand the presentation to follow. The system consists
of central blocks and peripheral blocks. Central blocks are:
administration (ADM), switching (KOM), synchronization
(OSC), and UCP (Universal Central Processor). The UCP
unit distributes the messages among the central and peripheral
blocks. In order to increase the system reliability, the central
blocks are duplicated. The central blocks are connected via a
local Ethernet, which is doubled, too. All central blocks,
except UCP units, are connected to both Ethernet networks.

The peripheral blocks are connected to UCP blocks via
serial HDLC links. One pair of UCP units works in the load-
sharing mode for a group of six peripheral units. Each of those
six peripheral units is connected to to each of two UCP units
by its own separate link. The peripheral blocks (PB) are
subscriber blocks and interexchange trunks.

One of the main challenges facing DKTS 30 software
engineering is the variety of microprocessors (Motorola 68360
and Intel family are present, processors from the PowerPC
family are planned for future use), as well as the variety of
operating systems that run on different parts of the DKTS 30
switching system (WinNT, Linux, pSOS, RTEMS).

1 PUPIN TELECOM DKTS, Batajnički put 23, Belgrade, Serbia

E-mail: { milanj, brankok, mmarkov, dimitark}@ dkts.co.yu

The DKTS 30 software is based on object-oriented
principles [2]. It was developed using UML notation [3] and
standards for software projecting. The Rational Rose CASE
tool and C++ language were used. The software is organized
hierarchically with layers. Each layer provides a service to the
higher layer, and simultaneously it is a client of the lower
layer. Also, the software is organized as a collection of server
objects that are distributed. Main software abstractions are
modeled by these server objects. These servers are
implemented as finite state machines (FSM). This is a
common approach in design of embedded real-time systems
[4]. Each FSM is designed according to the Bridge pattern
[5], and consists of an interface and an implementation object.
Interface and implementation objects may reside on different
processors, and the only connection between them is their
unique identifier of the object.

Software that runs on peripheral blocks is differently
organized. In order to run faster, it is written on machine
language and standard C language. It runs on an operating
system originally developed by Iritel institute.

II. SOFTWARE REDESIGN PROJECT

The DKTS company has been slowly reorganized in order
to become an organization based on projects. Using
appropriate software tools: project plans are made, reports are
written, sucessfulness of project realization is monitored, etc.
A team is formed for each planned project. Members of one
team can work on more differnet projects at the same time.

The maximal capacity of the original DKTS 30 switching
system was 15872 subscribers. However, this number was
shown to be insufficient with the uprising market demands.
Therefore, the project of extending the capacity was
undertaken. The project goal was to provide the maximum
capacity of 174592 subscribers. The hardware changes were
described in [6], while the planned software changes were
described in details in [7]. This paper is dedicated to the first
results of the software redesign project, so the planned and
done hardware and software changes were described only to
understand the presentation to follow.

This project includes: a redesign of the system image, a
redesign of the interprocessor communication, more natural
integration of the remote subscriber unit into the system,
algorithms for distributed system supervision, appropriate
changes in the system data base and the graphical user
interface.

The project requirement was not only to trivially provide
capabilities for a larger number of blocks in the system, but
also to pay specific attention to the system performance. It
was highly unlikely that the algorithms that were shown to be
efficient with one traffic load would be efficient in the same
way with much heavier traffic load.

590

UCP UCP UCP

KOM2KOM1 ADM1 ADM2

Ethernet1

Ethernet2

PB
1

6

HDLCHDLC

PB
1

6

HDLCHDLC

OSC 1 OSC 2

UCP

Figure 1. A simplified DKTS 30 system architecture

Concerning the software compatibility, it was decided that
the new software has to be compatible with the original
hardware, but not with the software of the original solution.
That means that the new software can be executed on all
DKTS 30 platforms, but that it can not be mixed with the old
software.

The goal was to move beyond some obstacles that were
present in previous software solutions due to required
compatibility with the DKTS 20 system, which was put aside
in the meanwhile. Special attention was payed to the
intermediate period in order to make it possible to add new
funcionalities to the software of the old system as well as to
the software of the system with extended capacity.

Because of the decision to abandon compatibility with
DKTS 20 peripheral blocks, it was convenient to undertake a
redesign of the system software on peripheral blocks, which
was shown to be a complex task contributing to the delay of
the entire project.

Because of the large number of different processor types,
different hardware platforms, various operating systems,
situations in which it is necessary to perform potential error
corrections in the field and in laboratory conditions,
concurrently with adding new funcionality to the fisrt DKTS
30 system, a great attention was payed on developing
methodologies for software testing.

As a result, a set of tests was designed. The set comprised
different testing techniques: from the partial to the integral
testing, with and without the use of call generator, etc. In the
testing phase, the use of error information is increased.
However, the great part of this code will be excluded from the
final version in order to assure executable programs with the
minimal time of execution. In addition to this, finite state
machines whose only purpose is testing are designed. The
FSM whose only task is to generate desired traffic is
instantiated on every processor. This is an example of how
interprocessor communication is tested.

III. APPLIED SOLUTIONS

From the software soultions realized in the project of
extending capacity that concern this paper's topic, the most
important ones are those that concern interprocessor

communication. The base request of the redesign of the
interprocessor communication was to decrease the number of
messages needed in the operation of the switching system, as
well as to additinaly incerease reliablity of the interprocessor
communication. In order to fullfil these requirements, it was
necessary to make some changes in a message header. The
message header remained of the same length as it was. It
contains the same fields as in the previous implementation:
message type, source and destination internet address,
message identification, destination object's identification.
However, some changes were inevitable. First of all, the
format of internet address had to be changed. Next, the way
message type is marked was also changed. As a result of these
changes, incompatibility with the previous software
implementation became unavoidable. Among other things,
with the new message caracterization, it became possible for
clients in upper software layers to supress acknowledgement
messages on the protocol layer when functional messages are
used to acknowledge an application layer acknoledgement
request.

In the aim of acchieving faster interprocessor
communication, the SP protocol was abandoned. The SP
protocol was used for communication between peripheral and
UCP blocks via HDLC links [8]. The reason for the presence
of this protocol in the previous implementation lay in
requested compatibility with DKTS 20 peripheral blocks.
Since the concept has been abandoned in the meanwhile, the
NLC layer of the interprocessor communication protocol stack
was eliminated. In adition to this, another historical role of the
UCP board, which also existed due to requested compatibility
with DKTS 20 peripheral blocks, became unnecessary in the
new software environment. That was the NLB layer whose
task was to perform message format conversion between
DKTS 20 and DKTS 30, and vice verse.

 The design of the first DKTS 30 switching system did not
support communication between UCP boards belonging to
one Ethernet with UCP boards that belong to another
Ethernet. However, during the exploitation phase, the need for
communication between peer boards was brought to attention.
In addition to this, there was the need to put interprocessor
communication under software supervision. Accordingly, it
was decided to correct this defect by allowing software

591

routing from one Ethernet to another. Central blocks that have
available network interfaces belonging to both Ethernets
became potential routers. It was more than likely that this task
would be committed to the OSC board, since the OSC board
is the processor that is not overloaded with interprocessor
communication responsibilities. The routing is now supported
in system image. In addition to everything else, this routing
may be used in the case of a failure of a network interface on
boards with two network interfaces. For example, in previous
software versions, the KOM board with an inactive network
interface that belongs to the Ethernet A could not send a
message to a UCP board connected to the Ethernet A.

A reduction of the number of messages passing through the
system is acheived by the use of multicast techniques [10].
Instead of sending a large number of single messages to
different destinations, it is now possible to send only one
multicast message that is received by all procesors that are
members of the specified multicast group. The great problem
was the presence of several operatin system in the DKTS 30
switching system, each of which providing similar (but
different) programming interface towards the multicast
facilities. In addition to this problem, it was important to
provide that all processors in the group receive a multicast
message, but also to avoid duplicated messages, which may be
the consequence of the use of alternative routes. Periodical
updating of local image, sending information on block or
network interface failure or activation, periodical checking of
block states are cases in which it is evident that significant
improvements in speed and efficiency are achieved.

IV. CONDITIONS OF THE ANALYSIS

There is a model of DKTS 30 switching system dedicated
to extending capacity project in the research and development
laboratory of DKTS. Although this model is rather modest
comparing to the maximal capacity switching system, it has
been shown to be adequate for phases of develpment and
testing accomplished until now. All experiments to be
described have been conducted on it. This model consists of 2
ADM units, 2 KOM boards, 2 OSC boards, 4 UCP boards, 4
and 4 clasical subscriber blocks, 2 interexchange trunks, and
one extended subscriber block. There is a substantially better
equipped model of DKTS 30 system also dedicated to
extended capacity project in the DKTS testing department.

A call simulator Anritsu EF111A was used during the
testing phase. The calls are established via 4 subscriber
blocks, 3 of witch are connected to one pair of UCP boards,
and the last one is connected to other pair of UCP boards. Due
to limited number of available cables, only 24 dual telephone
connections are formed, divided into 3 groups with 8
connections per each. To cover all cases of interest for testing,
the first group consists of connections between subscribers
that are connected to the same subscriber board, the second
group consists of connections between subscribers that are
connected to two subscriber boards that are on the same pair
of UCP boards, and the third group consists of connections
between subscribers that are connected to two subscriber
boards that are connected to different pairs of UCP boards.

An asinchronous mode of establishing connections was
chosen. The generated telephone traffic was controlled by
call simulator parameters: duration of a call (path hold time)
and the time between the end of one call and the beginning of
the next call (release time)

V. RESULTS

Some results of accomplished comparison of the extended
capacity switching system (ECSS) and the original DKTS 30
switching system (OSS) were presented in this section.

The first experiment is related to software download to
peripheral blocks: a clasical subscriber block (cSB), an
extended subscriber block (eSB), a clasical interexchange
trunk (cIT), and an interexchange trunk with SS7 signalization
(sIT). The sizes of files to be downloaded are practically the
same for both variants.

TABLE 1
SOFTWARE DONWLOAD TO PERIPHERAL BLOCKS

Peripheral
unit

Number of
units [512B]

OSS [s] ECSS [s]

CSB 257 11 6
ESB 436 18 9
CIT 513 21 11
SIT 692 29 14

Table 1 shows that significant improvements were fulfilled.
The software download to periperal blocks in the ECSS
vatiant is even two times faster. The main reason for this
improvement is abandonment of SP protocol that was used in
communication between peripheral blocks and UCP blocks.
The number of messages needed to download the sotware to
peripheral blocks was significantly decreased in this way.

Besides, by a change of the download alghoritam, although
it is still centralized, with the master administration in charge,
additionaly was decreased the number of messages needed to
download the software to peripheral blocks. The obtained
improvement of software download to peripheral blocks
enables significant decrease of startup time of the whole
switching system during a cold start.

A new realization of switching system supervision also
brings a significant improvement. A notification of all blocks
in the system about a change in the system was given as an
example (Table 2). One has to notice that functional answers
to this notification messages are used to check a state of the
blocks. Three variants are compared: original (centralized)
solution (OS), original (centralized) solution with multicast to
central blocks and unicast to peripheral blocks (MC), and
distributed solution with multicast to central blocks where
UCP boards have a role to notify and monitor peripheral
blocks that are connected to them (DS). An average response
time was given according to observing of the Ethernets and it
is calculated from an appearance of the first message of one
notification phase until the reception of the last response
message of that phase. The number of messages on Ethernet is
given for the maximal capacity original switching system,
what means the system with 128 peripheral blocks. The

592

switching system model in the testing department was used
for this experiment.

TABLE 2
NOTIFICATION AND POLLING OF BLOCKS

Verion Number of messages
on Ethernet

Average respnse time

OS 708 600 ms
MC 612 500 ms
DS 90 350 ms

The advantage of distributed solution compared to
centralized solutions is clear. The benefit of using multicast
has not to be neglected, although it is not as significant as it
was expected, because of higher number of peripheral blocks
compared to number of centralized blocks.

Encouraging results were also attained by testing the
switching system by the call simulator (Table 3). During the
testing of the original switching system each subscriber block
was loaded with 2500 calls per hour (above that some
problems are generated). The number of unseccesful calls of
500000 generated calls is about 1000, that means 0.2%.
During the testing of extended capacity switching system each
subscriber block was loaded with 6000 calls per hour. The
number of unseccesful calls of 500000 generated calls is about
25, that means 0.005%.

TABLE 3
TESTING WITH CALL SIMULATOR

Version Number of calls per
subscriber block

Percent of
unsecesful calls

OSS 2500 0.2%
ECSS 6000 0.005%

It was shown that discarding the compatibility with DKST
20 perihperal blocks, what means abandonment of SP protocol
that was used in communication between peripheral and UCP
blocks, as well as abandonment of conversion of messages on
UCP boards, significantly increases throughput power of
peripheral blocks, along with improved stability. According to
paper [11], this means that it was reached almost the maximal
traffic on peripheral blocks that KOM boards with current
swithcing system architecture and organization can persist
without saturation.

VI. CONCLUSION

A flexible base for the DKTS 30 switching system was
provided by the software redesign project, although the main
goal was to increase the capacity of the system. The first
results of the work are encouraging, as was shown in this
paper.

Significant improvements were fulfilled concerning
software donwload on peripheral blocks. Even two times
faster is download of software in the extended variant
comparing with the original variant. The obtained
improvement enables significant decrease of startup time of
the switching system during a cold start.

A lot has been done to decrease the numer of messages that
propagate through the system (SP protocol was abandoned,
using of multicast, unnecessary response messages both on
protocol and functional level were discarded). This, in the last
instance, makes the response time to certain events
significantly shorter. So, considerable improvement was
fulfilled in the process of notification and polling of blocks in
the swithcing system. The advantage of distributed solutions
compared to centralized solution is clearly shown even for the
original switching system with maximal capacity.

By abandonment of compatibility with DKTS 20 systems,
the interprocessor communication with peripheral blocks was
refined. Testing of the switching system by call simulator
shows increased throughput power of peripheral blocks with
new software, along with substantial improvement of work
stability.

Because of not small complexity of the software redesign
project in order to extend capcaity of digital public switching
system DKTS 30, parallel work of the project members on
different development projects which priority have been
changed during the time, situations in which it is necessary to
perform potential error corrections in the field and in
laboratory conditions, concurrently with adding new
funcionality to the first DKTS 30 system, there was no enough
time to compare newly realized solutions with the original
ones. As the project approaches its end, there will be more
time to analysis and comparing of original DKTS 30
switching system with the switching system with extended
capacity.

REFERENCES

[1] Jovanović M., Šuh T., System DKTS 30 Main Characteristics,
Telfor 1997, Beograd, 1997.

[2] Booch G., Object-Oriented Analysis and Design, Second
Edition, Benjamin-Cummings, 1994.

[3] UML Semantics, Rational Software Corporation, 1997.
[4] Selic B., Gullekson B., T.Ward P., Real-Time Object-Oriented

Modeiling, Willey Professional Computing, 1994.
[5] Gamma E., Helm R., Johnson R., Vilsides J., Design Patterns

– Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1994.

[6] Laketa S., Vidić P., Nikolić N., “Povećanje kapaciteta sistema
DKTS”, Telfor 2003, Beograd, 2003.

[7] Kolašinović B., Komlenović D., Jovanović M., “The Redesign
of the Software of the DKTS 30 Switching System to Support
Extended Capacity”, ICEST 2004, Bitola, Makedonia, 2004.

[8] Jovanović M., Hiršl V., “Međuprocesorska komunikacija u
telefonskoj centrali DKTS 30,” YU INFO 1999, Kopaonik,
1999.

[9] Vujadinović D., Jovović Ž., “Funkcionalna konverzija poruka
u sistemu DKTS20/30,” IT’98, Žabljak, pp. 64-66, 1998.

[10] Deering S., “Host Extensions for IP Multicasting,” RFC 1112,
1989.

[11] Markov M., Kolašinović B., Jovanović M., “Merenje
opterećenja nekih resursa telefonske centrale DKTS 30
softverskom simulacijom poziva,” YUINFO 2002, Kopaonik,
2002.

