

610

XML-Based Languages for Intelligent Service Creation
Evelina Pencheva1, Ivaylo Atanasov2

Abstract - CPL is a language that can be used to explain to SIP
servers what to do with a call. VoiceXML is a language that is
used to describe speech dialogues between the computer and the
end user. In this paper we investigate how XML-based languages
like CPL and VoiceXML can be used in creating value-added
services in IP networks.

Keywords - service creation, intelligent network, CPL,
VoiceXML

I. INTRODUCTION

Intelligent Network (IN) was designed in the early 1990s
for delivering value added services in circuit switched
telephony networks. At that time the World Wide Web was
still in its infancy and in many countries a single national
operator still owned the network. Although there are many
features of IN that can be recognized in the Internet, there is
one important differrence. In IN these features are centrally
controlled; in the Internet they are completely distributed
through the network.

The IN and Internet protocol (IP) technologies are conver-
ging in a variety of ways including the use of IP for transmis-
sion of voice - voice over IP (VoIP) - for more cost effective
transport of voice communications. In addition, efforts are un-
derway to allow intelligence in public switched networks to
interface and interact with intelligence in IP based networks,
and doing so, provide greater overall intelligence.

An important effort to define capabilities for hybrid IN + IP
networks involves the integration of IN with the Session
Initiation Protocol (SIP). This integration will allow for more
flexible service control options than could be afforded through
either technology by itself.

The Call Processing Language (CPL) is a XML-based lan-
guage to describe and control Internet telephony services. It is
designed to be implementable on either network servers or
user agents. It is meant to be simple, extensible, and
independent of operating system or signaling protocol. It is
suitable for running on a server where users may not be
allowed to execute arbitrary programs, as it has no variables,
loops, or ability to run external programs.

VoiceXML is a markup language that enables integration of
voice services with data services using the familiar client-
server paradigm. It separates user interaction code (in
VoiceXML) from service logic. The language promotes
service portability across implementation platforms and is
easy to use for simple interactions, and yet provides language
features to support complex dialogs.

1Evelina Pencheva is with the Faculty of Telecommunications,
Technical University – Sofia, blvd “Kliment Ohridsky” 8, 1000
Sofia, Bulgaria, enp@tu-sofia.bg

2Ivaylo Atanasov is with the Faculty of Telecommunications,
Technical University – Sofia, blvd “Kliment Ohridsky” 8, 1000
Sofia, Bulgaria, iia@tu-sofia.bg

In this paper we explore the capabilities of CPL and Voice-
XML that help end users to define their call treatment. We
consider an example of malicious call identification service
and suggest service scripts in CPL and VoiceXML.

II. SERVICE CREATION IN INTELLIGENT NETWORKS

The IN provides great flexibility to service creation in
general and also to the tailoring of services to suit the exact
requirements of a particular user. Service creation in IN invol-
ves three basic components – SIBs, service features, and
services. SIBs are the smallest building blocks that describe
reusable network capability used to create service features.
Some functions are commonly used for many services, for
example, number translation services or mass calling services.
These functions are called service features and are built of one
or more SIBs. A service is built by combining one or more
SIBs and features or services or both. To illustrate how SIBs
can be combined to build service logic script, the malicious
call identification service is considered.

The malicious call identification (MCI) service is built by
combining the following core features: call logging (LOG)
and originating call screening (OCS). LOG allows a record to
be prepared each time a call is received by a special telephone
number. OCS allows the served user to bar calls (call scree-
ning) from certain areas based on the district code of the area
from which the call originates.

Malicious call identification service can incorporate one
optional feature: customer profile management (CPM). CPM
allows the subscriber to manage the service profile in real
time, that is, changing answering places, control the
announcements to be played, perform call distribution, change
time-dependent routing, and so on.

Combining the optional feature CPM and the core feature
OCS creates the remote control of malicious call identification
service.

Begin

User interaction

Compare

User interaction

Play announcement
Get service code

Validate MCI
service code

Play announcement
Get the code of the
restricted area

Return to BCP:
Release call Clear call

Match

Service data
management

Return to BCP:
Release call

Write the area code
in a user database

No match

User interaction

Play announ-
cement

Clear call

Figure 1 Service script for MCI service activation

611

When modeling service logic two cases have to be consi-
dered: service activation and service execution. Figure 1
shows a simplified version of a service script for the
activation of MCI service. For the sake of simplicity, Figure 1
shows only SIBs flow with comments, but not SIB’s
parameters. When the subscriber wants to activate the MCI
service, he has to dial a special number, provided by the
network operator. This number accesses the management
functions of the subscriber’s profile.

In essence, this service activation logic performs the
following steps:
• A message is played asking for the service code and user

input is received in the form of DTMF tones.
• The service code is verified against the MCI service code.
• If the received code is MCI service code, a message is

played to the user, asking for the district code of the
restricted area and the user input is received.

• The restricted area code is stored in the user database and
the call is cleared.

• If the received code is not MCI service code, an error
message is played to the user and the call is cleared.

Basic call process (BCP) is a special SIB that describes the
phases of call set up. At each of these phases it is possible to
interrupt the call setup and to start execution of a service
script. After finishing the processing of the service, the last
SIB hands back control to the BCP.

Figure 2 shows a simplified version of a service logic for MCI
service execution. The service proceeds in the following way.
• The district code from which the call originates is

compared against the restricted area code.
• If the call originates from the restricted area, a record is

prepared and the call is cleared.
• If the call originates from an area that is different than the

restricted area the call setup continues.

III. XML-BASED LANGUAGES AND IN

The CPL can be used to describe and control Internet tele-
phony services. It is not tied to any particular signaling archi-
tecture or protocol; it is anticipated that it will be used with
both the SIP and H.323.

SIP is an application-layer Internet protocol for setting up
multimedia conferences over the Internet. A SIP server can
perform any of the IN features, such as those for numbering,
routing, charging, access, and restriction. CPL provides tools
for creating call-processing scripts that runs on SIP servers.

CPL is powerful enough to describe a large number of IN
services and features, but it is limited in power so that it can
run safely in Internet telephony servers. The intention is to
make it impossible for users to do anything more complex
(and dangerous) than describe Internet telephony services.
Table 1 shows how some of the IN SIBs can be translated to
CPL.

TABLE 1

MAPPING IN SIBS TO CPL

IN SIB CPL equivalent
Algorithm No direct equivalent: CPL is not a

programming language

Charge No direct equivalent
Compare Switch
Distribute Switch
Limit Switch follow by reject
Log call
information

Nonsignaling action (log)

Queue No direct equivalent; could be
implemented in CPL by proxying
calls to a special queuing server

Screen Switch follow by reject
Service data
management

Location modifier with lookup
(CPL does not allow to write in a
database)

Status notification Signaling action (proxy)
Translate Location modifier
User interaction No direct equivalent; could be

implemented in CPL by proxying
calls to a special voice response
server with VoiceXML interpreter.

Verify No direct equivalent.

Begin

Compare
Compares the code
from which the call
originates against
the restricted area
code

Prepare a call record

Return to BCP:
continue setting

up the call
Clear call

Match

Log call
information

Return to BCP:
release call

No match

Continue

Figure 2 Service script for MCI service execution

612

SIP proxy

SIP server/
IVR system

Web server Database

1 2

3,9

5, 12
6

7

10

12

SIP phone

4, 11

Figure 3 A scenario for MCI service activation

A voice service is viewed as a sequence of interaction dia-
logs between a user and an implementation platform. The dia-
logs are provided by document servers, which may be external
to the implementation platform. Document servers maintain
overall service logic, perform database and legacy system
operations, and produce dialogs. A VoiceXML document
specifies each interaction dialog to be conducted by a
VoiceXML interpreter. User input affects dialog interpretation
and is collected into requests submitted to a document server.
The document server may reply with another VoiceXML
document to continue the user’s session with other dialogs.
The user is prompted for input and then records it. The user
input can be played back, and if the user approves it, is sent on
to the server for storage using the HTTP1 POST method. If the
platform supports simultaneous recognition and recording,
form and document scoped grammars can be active while the
recording is in progress.

The JSpeech Markup Language (JSML) is a text format
used by applications to annotate text input to speech synthesi-
zers. JSML elements provide a speech synthesizer with
detailed information on how to speak text and thus enable
improvements in the quality, naturalness and understand-
ability of synthesized speech output. JSML defines elements
that describe the structure of a document, provide
pronunciations of words and phrases, indicate phrasing,
emphasis, pitch and speaking rate, and control other important
speech characteristics. JSML can be used with conjunction of
the VoiceXML.

IV. MCI SERVICE IMPLEMENTED BY CPL AND
VOICEXML

The IN standards describing the interaction between service
control function and service data function are defined in terms
of INAP2 information flows. In Internet telephony services,
these interactions are replaced with HTTP requests to HTTP
servers that hold the call screening data for a particular
subscriber.

Let us consider MCI service provided over the Internet.
Having the service the user can screen the call from a particu-
lar area. The steps for MCI activation, as shown in the Figure
3, are as follows:

1 Hyper Text Transfer Protocol
2 Intelligent Network Application Protocol

1. The user dials a special number provided by service pro-
vider. The user agent (the software in the terminal) sends
the Invite request to the SIP proxy.

2. The SIP proxy server looks at the address, determines that
it belongs to SIP server with embedded Interactive Voice
Relay (IVR) system and sends the Invite request on to SIP
server/IVR system.

3. The SIP server/IVR system analyses the request and conc-
ludes that the user wants to activate a service. It
determines the Web server that stores the service
preparation script and sends a HTTP GET request to the
Web server asking for service preparation script. The
service preparation script can be a script written in PHP,
Java, Perl or some other script language.

4. The service preparation script is executed and as result it
creates a VoiceXML script that has to maintain the dialo-
gue with the user in context of the service activation.

5. The Web server returns the HTTP reply with the Voice-
XML script to the SIP server/IVR system.

6. The SIP server/IVR system starts interpreting the Voice-
XML script and speaking to the user. The user is asked for
the service he wants to activate.

7. The user inputs the MCI service code by DTMF tones.
8. The dialogue between the IVR system and the user

continues for getting the restricted area code from which
the user doesn’t want to receive calls.

9. The SIP server/IVR system posts the information retrieved
from the user to the Web server.

10. The Web server sends a SQL request to the Database for
updating user data. The database acknowledges the update.

11. The Web server creates a CPL script for MCI service.
12. The CPL script is posted to the SIP proxy of the user.

Figure 4 shows an example of VoiceXML script that retrie-
ves the user information needed for service activation. A sub-
dialogue is used to get the service code and a form dialogue
captures the restricted area code (359259). A subdialog is a
mechanism for decomposing complex sequences of dialogs to
better structuring, or to create reusable components. In the
example, service activation may involve gathering several
pieces of information, such as service code, the restricted area
code, and others. A customer care service might be structured
with several independent applications that could share this
basic building block, thus it would be reasonable to construct
it as a subdialog.

613

<?xml version="1.0"?>
<vxml version="1.0">
 <form id="callcenter">
 <var name="service_code"/>
 <subdialog name="serviceinfo"
 src="srvc_info.vxml#basic">
 <filled>

<assign name="service_code" expr="srvcinfo.code"/>
 </filled>
 </subdialog>
 <field name="area_code" type="digits">
 <prompt> What is the restricted area code?</prompt>
 <filled>
 <submit next="/cgi-bin/updatemci"/>
 </filled>
 </field>
 </form>
</vxml>

<?xml version="1.0"?>
<vxml version="1.0">
<form id="basic">

<filled>
 <field name="code" type="digits">
 <prompt>
 What is the code of the service you want to activate?
 </prompt>
 </field>
 <return namelist="code"/>
 </filled>
</form>
</vxml>

Figure 4 A VoiceXML script for MCI service activation

Figure 5 shows an example of CPL script for the MCI ser-

vice. If a call originates from area with 359259 code it is
rejected and the information is logged. The SIP server should
include information in the log, such as the time of the logged
event information that triggered the call to be logged, and so
forth.

 <?xml version="1.0"?>
 <cpl>
 <incoming>
 <address-switch field="origin" subfield="tel">
 <address subdomain-of="359259">
 <reject status="reject" reason="Not allowed to
 receive calls from 359259 subdomain"/>

<log name=”rejectedcalls” comment=”origin”/>
 </address>
 </address-switch>
 </incoming>
 </cpl>

Figure 5 A CPL script for MCI service

V. CONCLUSION

As the next generation network seemed to be IP-based SIP
is seen as the future of call signaling and telephony. Many
value-added services we are accustomed to use in the telepho-
ny networks can be implemented in IP networks with SIP.

Extremely complex telecom applications, as found in call
centers, have become even more complex when integrating
with e-mail and web applications for managing service profi-
les. For example, both call routing and e-mail routing to
agents – based on various criteria such as queue length, call
origin, time of day, customer ID – can be reduces to simple
XML scripts when using SIP and CPL. CPL has restricted
expressive power and can be used to describe decision
structures for routing calls. As most of the services require
user interaction CPL can be combined with VoiceXML to
adapt the services to customer call-processing preferences.

SIP in conjunction of CPL and VoiveXML can implement
any of IN features as those for numbering, routing, charging,
access, and restriction.

REFERENCES

[1] Alan B. Johnston, SIP: Understanding the session Initiation
Protocol, Artech House, 2004

[2] VoiceXML Forum, Voice eXtensible markup Language
VoiceXML, 2000

[3] J. Lennox, X. Wu, CPL: A Language for User Control of Internet
Telephony Services, RFC 3880, 2004

[4] Johan Zuidweg, Next Generation Intelligent Networks, Artech
House, 2002

