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Makes the Periodic Test the Systems Safety 
Tashko A. Nikolov1, Nikoleta H. Hristova2 

 

Abstract - The paper present the influence of several tests in 
the fault-tolerant control systems - absolute, relative and 
complete periodic tests, on the system reliability and safety. On 
the basis of some Markovian modelling techniques are offered 
generalised formula for obtaining the maximum safe period 
between system tests. On the one hand they avoid unnecessary 
over dimensioning and the resulting high manufacturing costs, 
while on the other hand it demonstrates a method of optimum 
distribution of the resource of the different tests in the fault-
tolerant systems. Besides, it provides opportunities for additional 
comparative analysis of the different fail-safe and fault-tolerant 
structures. 
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I. INTRODUCTION 

Stringent requirements on reliability and safety have been 
introduced for many technological processes in the fields of 
nuclear power, transport, space systems, chemical and other 
industries. These requirements affect the control systems as 
early in as design and development phase. They must take into 
account the growing requirements of the users, reflecting on 
their functionality and also they must be in line with the safety 
norms of the respective branch, national or international 
administrations. In many cases the safety requirements are 
determined in terms of the probability or mean time of a 
particular undesirable event occurrence. 

The failure detection means in particular computer systems 
comprise three types of tests - absolute, relative and complete 
periodic ones [1, 8]. Let us assume that the failure detection 
facility in the three types of tests is a, r and p, respectively. 

The absolute test has to detect failures for a period shorter 
than the system reaction time. The failure detection facility a 
of the absolute test is the probability of detecting the failure 
before the output of the result )10( ≤≤ a .  

The relative test consists of comparing two or more results 
from independent processing. The efficiency of the 
comparison r )10( ≤≤ r depends on the number of the 
compared information vectors N and on the dimensionality of 
these vectors n. If N=2, the probability of a wrong result 
obtaining is [8]: 

( ) nn /)(r 22121 −=−  (1) 
where: n is the length (in bits) of the output vector 
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In case of N=3, i.e. triple modular redundancy system 
(TMR), the probability for obtaining of two or three 
equivalent results is: ( ) ( )[ ]{ }nnn 2/122/113 −××  and 

( ) ( )nn // 21211 ××  respectively. 
The periodic test is a complete test of the system. It can be 

carried out both off-line (e.g. once a day, week or year) and 
on-line. In either case we can speak of a cycle of periodic test 
with duration Tpt. The failure detection facility p of the 
periodic test is the probability of failure detection at the 
complete testing (self testing) of the system )10( ≤≤ p .  

The purpose of the paper is to be established the 
requirements of the three types of test in order to be satisfied 
the safety criteria. The equations have to be valid for any kind 
of systems regardless of the number of redundant units and 
the used tests. 

II. MODELLING TECHNIQUE 

When the system reaction after occurrence of a failure is in 
accordance with an adopted criterion of after-failure 
behaviour, the failure is considered to be safe [3, 4, 10], 
otherwise it is considered to be dangerous. The dangerous 
failure rate is marked by λd, the safety failure rate is marked 
by λs. Obviously, λλλ =+ ds   

Since normally the cycle of the periodic test is longer than 
the system reaction time we believe that a dangerous failure of 
the system appears after a failure has not been detected by the 
absolute and relative tests 

λλ )r)(a(d −−= 11  (2) 
This, in a certain sense, is a worst-case assumption, because 

a new chance is given to the absolute and relative tests by the 
change of the information status [8].  

Fig. 1 shows the model, described in [8]. From a dangerous 
state the system may be brought only into safety state with 
transition rate α. Consequently, an occurred dangerous failure 
can be detected only by the periodic test. Then for the 
restoration rate from a dangerous state we obtain: 

ptT/p=α
 (3) 

The probability for staying in each state is [2, 6]: 
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Fig. 1. Markovian graph of an element from the control system  

In the model of safety control system the numbering of the 
states is rendered by an N numerical code, where N is the 
number of the modelling units. Each digit from this code can 
take one of the following values: 1, 2 or 3, which correspond 
to failure-free, dangerous and safety states of the element [6, 
7, 2]. The transition rates in the graph can exist only between 
states whose codes differ in only one digit. That means the 
condition of ordinariness is being observed, e.g. in the time 
interval (t, t+∆t) it is possible only one event to be realised. 

The following Markovian graph (Fig. 2.) is obtained at a 
system consisting of two elements (e.g. 2-out-of-2 system) 
each described by a graph from Fig. 1. 

 

 
Fig. 2. Markovian graph of a 2-out-of-2 system 

 
The probability for staying in any state is obtained by: 

P P P Pa b c a b ks s s s s s
= × × ×...  (7) 

where: 
a, b,...,k are the numbers of the elements 
s∈{1,2,3} are the numbers of the states: failure-

free, danger and safety. 
Reducing this graph according to [5], on the principle of 

number of failures occurred - number of failures detected, we 
obtain the so-called "impersonified" model. Here the 
numbering of the states is presented by a two-digit code, the 
first digit showing the number of failures that have occurred, 
the second showing how many have been detected [2]. The 
model is called "impersonified" because there is no 
information about the certain failed element. However, this is 
of no significance in the case when systems of static 
redundancy with identical reserved elements are investigated. 
All indicators of the "impersonified" graphs are marked by *. 

 
Fig. 3. "Impersonified" Markovian graph of a 2-out-of-2 system 
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The probabilities for staying in the separate states are: 
2
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When the system has at least one detected failure, it is in a 
safety state. Consequently, states 11, 21 and 22 are of the 
safety type. When unidentified failures emerge in both 
elements, there is no right result criterion and that is why state 
20 is considered to be dangerous, while states 00 and 10 are 
considered as failure-free. 

The graph of a multi-channel system (NMR system) is 
shown on Fig. 4. 

In general, the formula for finding the probability for 
staying in each state is: 

)PPP(
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where: 

n - number of elements 
i - number of occurred failures 
j - number of detected failures 
P1 - probability for a failure-free state of separate 

element 
P2 -  probability for a dangerous state of separate 

element 
P3 - probability for a safety state of separate element 
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Fig. 4. "Impersonified" graph of NMR 

III. MEAN TIME FOR DETECTION OF AN UNIDENTIFIED 
FAILURE 

The problem of finding the admissible time for the 
existence of an unidentified failure comprises: Designing a 
periodic test of such failure detection facility p and period Tpt 

satisfying the safety criteria, e.g. probability for dangerous 
failure of the system. 

The time required is the reciprocal value of the sum of the 
transition rates going out of the dangerous state of the system, 
e.g. the mean time for staying in a dangerous state [6, 5]. 

System 2-out-of-2 (NMR; N=2) 

The dangerous state of the 2-out-of-2 System is 20, with 
probability P P20 2

2* = . Corresponding to Eq. (9) from Eq. (5) 
is obtained: 
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where: Td is the mean time for staying in a dangerous state. 

The problem may be reduced to the evaluation of the mean 
time for staying in a dangerous state (Td=1/α) as a function of 
probability for a dangerous failure of the individual element 
P2, while in its turn P2 may be presented as a function of the 
probability for  dangerous  failure  of  the  system Qd.  That 
leads to obtaining implicitly the dependence α=f(Qd) for 
various types of systems (e.g. N=1,2,3,...). 

This makes possible: 
1. Simplification of the problem for more complex systems 

(NMR, N>2).  
2. Formulation of requirements both on the parameters of 

the periodic control and on the safety of the individual 
elements. 

The analytical investigation of the dependencies for 2-out-
of-2 is shown on Fig. 4., where Qdav is the dangerous 
acceptable value. 

System 2-out-of-3 (TMR) 

We have a dangerous failure in TMR system when the 
difference between the number of the occurred failures and 
those that have been detected is larger or equal to two. Then 
the dangerous states are 20, 30 and 31. Consequently, for the 
probability of a dangerous failure we obtain: 
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The solution of Eq. (16) constitutes the formation of the 
criterion for safety for the individual elements of the general 
safety criterion for the system. 

Three real roots are obtained in such a case, two of which 
are identical [10]. The results are graphically shown on Fig. 4. 

 
Fig. 4. Dependence between the mean time of staying in a dangerous 

state and the probability for dangerous failure by TMR 

From Eq. (5) it is possible to be obtained certain 
dependence (Fig. 5.) between the three types of failure 
detection means – absolute test, relative test and complete 
periodic test. One may recognise easily that the absolute and 
relative tests are not present (e.g. a=0 and r=0), there is a 
determined value A for the time duration of the periodic 
complete test, by which the safety norm can be observed. 

 

 
Fig. 5. Dependence between the time duration of the periodic test and 

the failure detection facility of the absolute and relative tests 
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When a = 0 and r = 0 we obtain the following: 
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IV. EXAMPLES 
Example 1. 

A 2-out-of-2 system with the following indicators of the 
individual elements is given: 

- Failure rate - λ = 10-5 h-1 
- Repair rate - µ = 1 h-1 
- Failure detection facility of the absolute test - a = 0.5 
- Failure detection facility of the periodic test - p = 0.95 
- Compared information vectors - N = 2 
- Order of the compared vectors - n =8 bits 
- Safety norm of the system - Qdav = 10-12 
The maximum admissible time for detecting a hidden 

failure is required.  

Procedure: 
Step 1.: Calculation of the failure detection facility of the 

relative test from Eq. (1): 

9961.0
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Step 2.: Calculation of the dangerous failure rate from Eq. 
(2): 

181095111 −−×=−−= h,.)r)(a(d λλ  

Example 2. 

A TMR system each element of which has the same 
parameters as in Example 1 is given. The maximum 
admissible time for the detection of a hidden failure is also 
required. 

Procedure 

Step 1: Calculation the failure detection facility of the 
absolute test from Eq. (3): 

( )( ) 98840
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Step 2: Calculation the dangerous failure rate from Eq. (8) 
( )( ) 181028511 −−×=−−= h,.rad λλ  

Step 3: Calculation the probability P2 for a dangerous failure 
by each element depending on the safety criterion Eq. (16): 

( ) 122
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Step 4: Calculation the mean time Td for staying in a 
dangerous state depending on Eq. (12): 
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Step 5.: Determination the maximum duration of the 
periodic system test  from Eq. (3): 

h,...pTpt 4999950 =×== α  

Table I. shows results about the maximum duration in 
dangerous state of the system for the two types of systems 
depending on the dimensionallity of the information vector. 
All other conditions are the same. 

TABLE I 

DEPENDENCE OF THE TD ON THE DIMENSIONALLITY 

n,bit 4 5 6 7 8 … 16 
Td(N=2),h 3.33 6.66 13.3 25 51.3 … 13333 
Td(N=3),h 0.68 1.28 2.5 4.8 9.9 … 2555 

V. CONCLUSION 

On the basis of some Markovian modelling techniques are 
offered generalised formula for obtaining the maximum safe 
period between system tests. On the one hand they avoid 
unnecessary over dimensioning and the resulting high 
manufacturing costs, while on the other hand they avoid 
unnecessary over dimensioning and the resulting high 
manufacturing costs, while on the other hand it demonstrates a 
method of optimum distribution of the resource of the 
different tests in the fault-tolerant systems. Besides, it 
provides opportunities for additional comparative analysis of 
the different fail-safe and fault-tolerant structures. The 
dependencies shown in the paper between the value of the 
safety norm and the time parameters of the failure detection 
means could be applied in many practical cases. This 
dependence may be used not only for analysis of fault-tolerant 
computer systems (e.g. aeroplanes, nuclear power plants etc.)  
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