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Abstract—Intriguing point of analog neural network 

implementation is the influence of network parameters over 
analog neural network behaviour. While such a simulation 
ignores the parallelism issues inherent in neural networks, it 
nevertheless provides us to investigate an analog neural network 
behaviour in relation to network parameters variation. In this 
paper, an investigation of an analog neural network by means of 
Matlab simulation is made.  

Keywords—� Neural network, Analogue methods, Analogue 
models 

I. INTRODUCTION 

A popular method for study of neural networks is network 
simulation using computers. It is appropriate approach from a 
theoretical and illustrative standpoint, but their applicability to 
practical implementations of analogue neural network is 
doubtful. The analysis of the circuits assumed that all the 
components were ideal. In this paper a  simulation using 
Matlab is presented, but in equations take part the parameters 
of real components. The variation of some of them reflects to 
learning and recognition properties of the neural network. In 
such a way an influence of parameter variation to the learning 
and recognition properties of the neural network can be 
examine.  

II. ANALOG NEURAL CELL MATHEMATICAL 
MODEL 

In last years many researchers investigated different  an 
analog neural network implementation. In [6] neural network 
implementation by means of analog amplifiers is presented. 
Equation 1 depicts activation function of an implemented on 
this way neuron.  
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Equation \ref{u} depicts neuron output voltage. 
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where W/L are the MOS resistive circuit multiplier 
width/length ratios, UC controls the total transconductance gmk, 

FCα  is the emitter-collector current gain, IB is the bias 

current, β  is MOSFET tranconductance parameter, UOR, 
UIS are control voltage and Ut is thermal voltage.    

A Matlab model, which includes parameters of real 
components is made on basis of  these equations.     

Assuming: 
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the equation  2 simplifies to: 
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The parameter variation leads to A and B variation. 
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Then from equations 6 and 7 the output neuron voltage cell be 
written as 
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III. MATLAB SIMULATION RESULTS 

In the discussed paper a two-layer neural network with four 
neurons in the input layer, three neurons in the hidden layer 
and one neuron in the output layer is presented 

Simulation was performed with neural network showed to 
igure 1. On this way it is showen that most appropriate results 
are obtained at A=1. Figure 2 shows that at η  =0.1 and  A=1 
the characteristic has least steepness of all.  
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Fig. 1. A two-layer neural network 
 
The learning patterns are: 
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d1=-1, d2=0, d3=1, d4=-1, d5=0, d6=1, d7=-1, d8=0, d9=1, d10=-
1, d11=1, d12=0, d13=-1 
The recognition patterns are: 
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Fig. 2. Variation of A and B reflects to recognition capability of 

neural network. 
 

TABLE I 
NOTATION OF FIGURE 2 

 
A B notation 
1 0.77 1 
1 0.4 2 
1 o.26 3 

1.25 0.77 4 
1.25 0.4 5 
1.25 0.26 6 
1.66 0.77 7 
1.66 0.4 8 
1.66 0.26 9 
2.5 0.77 10 
2.5 0.4 11 
2.5 0.26 12 

 
With η  increasing the characteristic steepness increasing 

too. When A increase, learning rate decrease. At=2.5 the 
neural network is capable only for value η =0.1. Figures 3, 4, 
5 depict these dependences. The values of the parameters of a 
neuron are: IB=50mA, UOR=5V, FCα =0.5, isβ =1mA/V2, 
Ut=26mV, gmk=1mA/V, UIS=5V, Wj/Lj=1, UC=5V, W0/L0=1, 
2 or 3, ORβ =2,3,4 or 5mA/V2. For ORβ =2mA/V2, the value 

of A is A=2.5, for ORβ =3mA/V2, the value of A is A=1.66, 

ORβ =4mA/V2, A=1.25 and for ORβ =5mA/V2, the value of A 
is A=1. Respectivly for W0/L0=1, the value of B is B=0.77, for 
W0/L0=2, the value of B is B=0.4, and for W0/L0=3, the value 
of B is B=0.26. 
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Fig. 3. Influence of η  to recognition capability of neural network, 

A=1, B=0.77. 
 

 
Fig. 4. Influence of   to recognition capability of neural network, 

A=1.25, B=0.77. 
 

 
Fig. 5. Influence of η  to recognition capability of neural network, 

A=1.66, B=0.77. 
 
 
 
 
 
 

TABLE II 
FIGURE 3,4,5 - NOTATION VALUE OF B IS B=1 

 
A η  notation Figure N: 
1 0.5 - - 3 
1 0.4 -.- 3 
1 0.3 . .  3 
1 0.2 gray 3 

1.25 0.5 - - 4 
1.25 0.4 -.- 4 
1.25 0.3 . .  4 
1.25 0.2 gray 4 
1.66 0.5 - - 5 
1.66 0.4 -.- 5 
1.66 0.3 . .  5 
1.66 0.2 gray 5 

IV. CONCLUSION 

In this paper a computer simulation using Matlab is 
presented. In neural network equations take part the 
parameters of real components. The variation of some of them 
reflects to learning and recognition properties of the neural 
network. In such a way an influence of parameter variation to 
the learning and recognition properties of the neural network 
can be examine. The simulation results shows that neural 
network has adequate behaviour for values for A=1 and for 
B=0.77. 
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