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I. INTRODUCTION 

Nonlinear systems (electrical, mechanical, biomedical, 
economical) that under the specific conditions exhibit chaotic 
behavior, attracted wide interest of researches in the last 
several decades [1]-[4]. One of important topics in this area is 
detection of the current system state. There are several 
techniques for chaos detection: Lyapunov exponents, 
Kolmogorov entropy, Poincare sections [5]. Lyapunov 
exponents are the most commonly used quantitative measure 
of chaos. Since Lyapunov exponents are calculation 
demanding, they are unusuable in the systems that in short 
interval, by varying one or several parameters, undergo 
different states. The other methods are applied in such cases. 

In this paper, chaos detection in nonlinear oscillatory 
circuits, based on a time-frequency representation, is 
considered. Proposed detector estimates system state using a 
concentration measure of time-frequency representation. 
Detector has no information about oscilattor's structure and 
parameters. In this paper, detection is applied in case of  the 
Colpitts oscillator, a simple circuit that is usually used in 
communications.  

After the introduction, Colpitts oscillator is described in 
short in Section II. Proposed detector is studied in details and 
simulation results are shown in Section III. Finally, the 
conclusions and future research topics are given. 

II. COLPITTS OSCILLATOR 

Colpitts oscillator that we consider is shown in Fig. 1a. The 
circuit consist of a single bipolar junction transistor Q which 
is biased in its active region by appropriate choice of EEV , 

EER  and CCV . The feedback network consists of an inductor 
L with series resistence LR , and a capacitive divider 
composed of 1C  and 2C . If we suppose, as in [1], that 
bipolar transistor works in directly active region and cutoff, 
we can model transistor as a two-segment piecewise linear 
voltage controlled nonlinear resistor (Fig. 1b).  
 

 
Fig. 1. (a) Colpitts oscillator with bipolar transistor. (b) Its 

equivalent circuit. 

Thus, circuit can be described by system of three state 
equations: 
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where NR  is characteristic of nonlinear resistor, given as: 
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THV  is voltage threshold, ONR  is on-resistance for small 
signals and Fβ  is direct current gain. 

This oscillator, with the suitable choice of parameters, 
exhibits chaotic behavior and can be exploited as a transmitter 
in chaotic-carrier communication systems [6]. 

Note that dynamic of the chaotic Colpitts oscillator linear 
conjugates to that of the asymmetric Chua's oscillator [7]. 

III. PROPOSED DETECTOR 

We consider behavior of Colpitts oscillator with parameters 
as in [1]: nF541 =C , nF542 =C , H5.98 µ=L , 
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Ω= 400EER , V5−=EEV , V5=CCV , 255=Fβ , 
Ω= 100ONR , V75.0=THV . Resistor  LR  is linearly varied 

in the range from Ω67  to Ω5 . LR  is bifurcation parameter 
and route to chaos is period-doubling [2]. Time varying of 
parameter LR  causes change of the system state. 
Consequently, spectral content of the signal is changed and 
time-frequency representation is suggested as a natural tool 
for analysis. The short-time Fourier transformation (STFT) is 
applied in development of our detector, as the simplest and the 
most commonly used time-frequency representation [8]: 

 ∫
∞

∞−

τπ− τττ+= dewtxftSTFT fj2)()(),(  (2) 

where )(tx  is the signal of the interest, (here, it is voltage or 
current), while )(tw is window function. 

Logarithm of the STFT magnitude of signal )(tvBE  is 
considered and shown in Fig. 3a. In interval from Ω67  to 

Ω57 , oscillator exhibits periodic motion with the main 
frequency close to 88kHz. In the time-frequency plane the DC 
component, main frequency and components corresponding to 
main frequency multipliers can be seen.  Logarithm of the 
STFT magnitude for Ω= 59LR  ( ms2=t ) is shown in Fig 
3b. Decrease resistance LR  causes period-doubling 
bifurcations. Periodic attractor with twice period occurs in the 
phase space. In the time-frequency plane, a subharmonic 
(which magnitude is lower than the one of the main harmonic) 
and its multipliers can be seen (Fig. 3c). After several period-
doubling bifurcations system gets into chaos (Fig. 2b). In the 
time-frequency plane, between DC component and the main 
harmonic, there are many components of the same order of 
magnitude as dominant components. Logarithm of the STFT 
magnitude for Ω= 48LR ( ms5=t ) is shown in Fig. 3e. After 
that, chaos occurs, again. Finally, for Ω= 9LR , oscillator 
returns to periodic regime.  

Note that similar results are obtained for signals )(tvCE  
and )(tiL . 

From previous consideration, we conclude that oscillator 
state can be estimated based on a concentration measure of 
signal’s time-frequency representation between DC 
component and the main harmonic component. Thus, we 
create a concentration measure of the STFT as: 
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Fig. 2. (a) Period 2 attractor ( Ω= 57LR ). (b) Chaotic attractor 

Ω= 35LR . 

where )(tΩ  is threshold, )(tf m  is frequency of the main 
spectral component. Function );()( ftu tT  is given as: 
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Procedure can be summarized in several steps.  

I step - Calculation of the STFT using Eq. (2). 

II step – Determination of the main spectral component 
)(tf m  as a position of maximum in the STFT, excluding 

region around DC component: 

 |),(|maxarg)( ftSTFTtf
f

m
ϕ>

=  (4) 

where ϕ is region of DC component (its width is several 
frequency samples).  

III step – Threshold )(tΩ selection so that the STFT 
samples with magnitude higher than )(tΩ contain almost all 
signal’s energy. Energy that remains outside of this region is 
very small:  
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Fig. 3. (a) STFT. (b) Logarithm of the STFT for t=2ms - period 1 orbit. (c) Logarithm of the STFT for t=3ms - period 2 orbit. (d) Logarithm of 
the STFT for t=5ms - chaos. (e) Logarithm of the STFT for t=10ms - periodic window. 

 

Note that our algorithm works well for relatively wide range 
of parameters ε . To determine threshold )(tΩ , the 
magnitudes of the STFT samples, in considered instant, are 
sorted in descending order. Threshold is selected as a position 
where the rest of sorted sequence has energy smaller or equal 
to:  

∫
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ε

0

2|),(| dfftSTFT . 

In Fig. 3 the threshold is shown as a solid horizontal line. 

IV step – Detector response calculation according to 
relation (3). To avoid possible noise influence and other 
errors, detector response )(tm is averaged within a small 
interval around considered instant: 

 ( ) ∫
+

−

ττ=′
2

2

)(1
pt

pt

dm
p

tm . (6) 

V step – Determination of current state based on )(tm′ : 
 
 
 
 
 

regime chaotic)()( tCtm ≥′  
 regimeperiodic)()( tCtm <′  (7) 

where )(tC  is detection threshold. In chaotic regime, it is 
expected that the STFT in entire region [ ])(,0 tf m  is above 
the threshold. Thus, the expected value of )(tm′ in chaotic 
regime is close to )(tf m . However, in periodic regime values 
of the STFT between the DC and the main spectral component 
are small. We assume that width of signal’s components is 
known and determined by the used window function. 
Numerical calculation using Hanning window results with 
three nonzero frequency samples for frequency of sinusoidal 
component on frequency grid. Then, the expected value of 

)(tm′  in periodic regime, for the Hanning window of the 
width T , is T5  (5 frequency samples, 3 of the main 
component and 2 of DC component, since one is in negative 
frequency region). Threshold is selected as the arithmetic 
mean of the expected values of detector response in periodic 
and chaotic regimes: 
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Fig. 4. (a) Time-frequency representation. (b) Thick line - detector response; dash line - threshold. 
 

IV. SIMULATION RESULTS 

In this section, the proposed detector is considered in the 
case of period-doubling route to chaos. Parameters of the 
Colpitts oscillator are the same as in previous section. We set 

016.0=ε . Illustration of the time-frequency representation is 
repeated in Fig. 4a. Detector response is shown in Fig. 4b. 
Threshold is marked with dashed horizontal line. Regions 
where the detector response is above the threshold 
corresponding to chaos behavior. Our results are according to 
theory. Periodic windows are, also, correctly detected. 

V. CONCLUSION 

A simple chaotic state detector is presented. Using of the 
concentrating measure of the STFT samples enabled tracking 
and estimation time-varying behavior of the nonlinear 
oscillators. Colpitts oscillator is numerical analyzed, since it is 
well known in theory. Proposed estimator is tested on the 
other chaotic oscillators and obtained results are satisfactory.  

In future work we will extend proposed detector to 
distinguish between various attractors. 
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