
 

658 

Calculation of the Sampling Losses for Nonuniformly 
Sampled Data 

Rossen G. Miletiev1, Slavcho Lishkov2 

 
Abstract - A new definition of the optimum nonuniform 

sampling sequence is proposed. This definition is based on the 
spectrum analysis of nonuniformly sampled data according to 
Koh-Wicks-Sarkar spectrum estimation equation. Also 
simulation results are represented to calculate the sampling 
losses in comparison with the uniform sampling scheme. 
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I. INTRODUCTION 

Nonuniformly sampled data occurs in several applications 
such as geophysics [1], Laser Doppler Anemometry (LDA) 
[2], oscilloscopes [3] and radar or sonar signal processing [4]-
[5]. Such type of data is used by the system designers to avoid 
aliasing in the signal spectrum or due to the technical 
problems, it is sometimes impossible to perform regular 
sampling.  

Several methods for spectrum analysis of the nonuniformly 
sampled data is proposed, such as Lomb periodogram [6], 
Koh-Wicks-Sarkar equation [5], Dirichlet transformation [7], 
SECOEX method [8], non-uniform DFT [9] and some 
approximation methods [10]-[11]. But only few publications 
examine closely the problem with the optimum sampling 
sequences based on these spectrum estimation methods. These 
publications study the effect of the sampling scheme on the 
estimation performance and define the optimum sampling 
sequence for the alias frequency suppression to obtain low-
aliasing spectrum estimation methods. 

This paper studies the sampling losses of the nonuniformly 
sampled data depending on the sampling scheme and defines 
an equation for the optimal sampling sequence. 

II. MATHEMATICAL BACKGROUND 

Lets a continuous complex signal x(t) is sampled at time 
instants, t=tk, k=0,1,..,N-1. The frequency response E(jω) at 
frequency ω of the sequence is estimated by the equation [5]:  
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where τ is a free parameter, defined as: 
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The equation (2) can be written in the following way: 
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substitute the equation (3) in this expression, then the 
following equations can be written: 
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In this case we define the optimal sampling sequence as the 
time sampling sequence, which sets the spectrum peaks of the 
input signal to its maximum value. 

If the signal contains the frequency component ω0, then the 
optimal sampling sequence satisfies the following equation: 
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So, if we perform the input complex signal x(t) as a sum of 
two signals ( ) ( ) ( ) tjttjxtxtx 0021 sincos ωω +=+= , then the 
frequency response of the input signal is a sum of the partial 
frequency responses: 

( ) ( ) ( )02010 ωωω jEEE +=                        (9) 
Each partial frequency response can be estimated by the 

equation (1). So if we substitute the equations (4) – (7) in the 
partial frequency responses E1(ω0) and E2(ω0), then the final 
expressions can be written as: 
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Therefore, the frequency response of the input signal can be 
estimated by equations (9) - (11): 
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The power spectrum can be estimated by the equation (12): 
( ) 222

0 µω −+= NNX                        (13) 
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So, the optimal sampling scheme satisfies the equation: 
0=µ .                                      (14) 

 So, the optimal sampling scheme is up to the following 
requirements according to equations (3) and (14): 
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The uniform sampling sequence defines the time samples 
according to the equation tk=kT, which modifies the equation 
(15) to the following term: 
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where 
N

fkkf sππω 22 00 == . 
Therefore, the uniform sampling scheme is optimal 

according to equation (15), because it satisfies the both 
trigonometric sums for the frequencies, defined by the Fourier 
transform. 

The nonuniform sampling case is difficult to be analyzed 
because the equation (15) can not be solved in the general 
case. By reason of this circumstance, we will analyze the 
sampling losses, which are generated by the deviation of the 
used sampling sequence from the optimal one. 

To analyze the sampling losses, we assume the sampling 
scheme, shown at Fig.1. 
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Fig.1. Sampling diagram 

 
The sampling losses are evaluated by the equation: 
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Therefore, the sampling losses vary from 0dB to 3dB 
according to parameter value µ/N (Fig.2). 
 

 
Fig.2. Sampling losses vs. parameter µ/N 

The shown figure displays that the sampling losses can be 
neglected if the parameter value µ/N is smaller than 0,3. In this 
case the losses are smaller than 0,1dB, which defines such 
types of sampling schemes as quasi-optimal ones. 
When the parameter value µ/N exceeds this limit, the losses 
increased very fast and they are equal to 1dB when the 
analyzed parameter is set to 0,8. 

III. SIMULATION RESULTS 

The influence of the sampling sequence over the sampling 
losses is calculated by simulation using MATLAB routine. 
We implement three times per 100 independent generation of 
sampling instants δk, which are uniformly distributed in the 
following intervals: 

• δk≤ 1/2Т  
• δk≤ 1/4Т  
• δk≤ 1/8Т . 

Then we calculate the sampling losses in these three 
simulations according to equation (17) using equations (4)-(7) 
below and above Nyquist limit for each case. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.3. Sampling losses below Nyquist limit 
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The simulation results below Nyquist frequency in these 
three cases are shown at Fig.3a-c respectively. The simulation 
results show that the maximum sampling losses are reduced 
from 0,1dB to 0,01dB while the sampling instants δk are 
decreased from 1/2Т (Fig.3a) to 1/8Т (Fig.3c). 

The simulation results are totally different when we 
calculate the sampling losses above Nyquist limit. In this case 
the simulation results are represented at Fig.4a-c for the 
chosen sampling instants intervals. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig.4. Sampling losses above Nyquist limit 

 
The shown figures display that the sampling losses remain 

unchanged when the analyzed frequencies differ from the 
values ±∞±±=== ,....,2,1,22 kT

kkff s .  

When the chosen frequencies are much closed to these 
values, the sampling losses increased very quickly from 0,1dB 
to 1,6dB while the sampling instants kδ are decreased from 
1/2T (a) to 1/8Т (c). 

The represented results show that the sampling losses 
remain below 0,1dB while the sampling intervals satisfy the 
equation δk≤ 1/2Т. These losses are nearly independent from 
the chosen sampling intervals. 

IV. CONCLUSION 

This paper studies the sampling losses of the nonuniformly 
sampled data depending on the sampling scheme and defines 
an equation for the optimal sampling sequence. 

The sampling losses are calculated according to the 
sampling interval choice and an optimal nonuniform sampling 
scheme equation is defined. The simulation results show that 
the sampling losses are very small and they are nearly 
independent from the chosen sampling scheme while the 
sampling intervals do not exceed 1/2Т limit. 

Therefore, this sampling scheme is recommended due to its 
low sampling losses and low aliasing frequency response at 
very wide frequency range. 
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