

683

Modelling and Monitoring NFRs in Autonomic Systems:
AS-TROM Approach

O. Ormandjieva

Abstract – This paper is the first report on the ongoing
research targeting the rigorous development of autonomic (self-
managing) systems with built-in continuous monitoring of their
non-functional requirements for quality through self-diagnosis,
followed by planning. The research is focusing on Autonomic
Systems - a significant and new strategic and holistic approach to
the design of computer-based systems. Autonomic elements have
complex life cycles, continually sensing and responding to the
environment in which they are functioning. Therefore, the
autonomic system can be classified as a real-time reactive system.
The autonomic system requires solid formal foundations for
system development and functioning. The Timed Reactive Object
Model (TROM) formalism for real-time reactive systems,
created at Concordia University, is being extended to model
autonomic systems whose architecture, system configuration,
and continuous self-monitoring of their quality are to be
specified within a single formal framework.

Keywords – Autonomic Systems, Formal Methods, Software
System Quality, Non-Functional Requirements (NFRs).

I. INTRODUCTION

Software systems are characterized both by their
functionality (what the system does) and by their non-
functionality (how the system behave with respect to some
observable attributes like reliability, reusability,
maintainability, etc.) Both aspects are relevant to software
development. However, non-functional issues have received
little attention compared to functional ones. The non-
functionality is addressed by just a few approaches, often
semi-formal or informal and limited in scope. The increasing
trend toward developing complex software systems has
highlighted the need to build software non-functional
requirements (NFRs) into the software system. To model and
validate these non-functional requirements new techniques
have to be developed in addition to existing formal methods
and tools.

This paper is focusing on Autonomic Systems - a
significant and new strategic and holistic approach to the
design of computer-based systems. This is a new and
challenging area in Software Engineering discipline emerged
in 2001 from the needs of the industry [6, 7] that has created
interests in different research groups worldwide.

The main characteristic of autonomic computing is self-
management, i.e., continually monitoring of its own use and
quality in the face of changing configurations and external
conditions based on automatic problem-determination
algorithms. One of the most important aspects of self-
management is to perform self-diagnosis to check the
system’s quality status. Building self-monitoring system
requires specifying what to monitor. In our approach, a set of
non-functional requirements of quality expressed as

constraints on the functional requirements, forms the set of
rules for monitoring.

The automation of system self-management requires solid
formal foundations for system development, including
integration of the NFRs into the development process. The
Timed Reactive Object Model (TROM) formalism created at
Concordia University [10, 11] has the required expressiveness
power for specifying autonomic elements. One of the first
objective of this research is to extend TROM formalism to
include the specification of the autonomic system architecture,
configuration, NFRs and self-monitoring rules within a single
formal framework AS-TROM.

The paper is organized as follows: Section 2 describes the
AS-TROM formalism. Section 3 introduces the NFRs in
Software Engineering. The related work is surveyed in
Section 4. Our approach is explained in Section 5. The
conclusions and the future work directions are outlined in
Section 6.

II. FORMALISM

The TROMLAB development environment is an integrated
facility based on the TROM formalism [10] for modeling,
analyzing, and developing real-time reactive systems. The
process model in TROMLAB supports the iterative
development approach, which provides the following benefits:

 Reduces risks by exposing them early in the development
process.

 Gives importance to the architecture of the system’s
configuration.

 Designs modules for large-scale software reuses.
The TROM formalism is a three-tier formal model [10]. As

a layered model, each upper tier communicates only with its
immediate lower tier. The independence between the tiers
makes the modularity, reuse, encapsulation, and hierarchical
decomposition possible. The three-tier structure describes the
system configuration, reactive classes, and relative Abstract
Data Types. The upper-most tier is the subsystem
configuration specification. It specifies the object definition,
their collaboration, and the port links, which regulate the
communication tunnels between objects. The middle tier is the
TROM class, which is a Generic Reactive Class and is
included in the subsystem. TROM class is a hierarchical finite
state machine augmented with ports, attributes, logical
assertions on the attributes, and time constraints. The lowest
tier is the Larch Shared Language (LSL) trait that represents
Abstract Data Type used in the TROM classes.

The AS-TROM formalism is extending the TROM
formalism through adding one more tier (see Fig. 1) to include
the specification of the autonomic system architecture, system

684

configuration, and self-monitoring within a single formal
framework. AS-TROM is expressive enough for developing
autonomic elements.

Fig. 1. AS-TROM: four-tier formal model

The design of the autonomic system is specified through

formally modeling the autonomic components and their
relations, and the timing requirements constraining system’s
behavior to ensure safety and liveness properties of the
system. The formal model of the autonomic system design has
to be validated by simulating its behavior and reasoning on
the results from the simulation. System verification takes
place at the next stage. The AS-TROM model of the system
has to be mechanically translated to a set of PVS [9] theories
consisting of axioms describing the timed behavior of the
system. Time critical properties such as safety and liveness,
are to be included as lemmas in PVS theories and verified
formally similarly to the current TROM process (see Fig 2).

Fig. 2. AS-TROM: Specification, Validation and Verification

Methodology

III. NFRS

Once a software system has been deployed, it is
straightforward to observe whether or not a certain functional
requirement has been met, as the areas of success or failure
are rigidly defined. The same is not true for NFRs of quality
as these refer to measurable quantities, which usually tend to
be strongly interdependent and are among the most expensive
and difficult to deal with [1, 2]. According to the software
engineering standard IEEE Std.830-1998 [12], NFR is defined
as “a software requirement that describes not what the
software will do, but how the software will do it, for example,
software performance requirements, software design
constraints, software external interface requirements and
software quality attributes”. NFRs had been neglected by the
requirements engineering practice and research. Usually NFRs
are expressed in a natural language, suffering from
ambiguities and potential conflicts. As a consequence, NFRs
are difficult to validate and verify; therefore, they are usually
evaluated subjectively. The above, and the importance of the
NFRs for developing high quality complex systems have
motivated the second objective of this work, namely, to
develop the hierarchical model of quality NFRs and integrate
its specification within the AS-TROM formalism through
mapping to system’s functional requirements specification.

IV. RELATED WORK

The most widespread approach for dealing with non-
functional requirements is the NFR framework [1]. A very
important aspect of non-functional requirements
decomposition using the NFR Framework is that, as far as
NFR softgoal are refined into more detailed ones, it is possible
to identify interactions between non-functional requirements.
These interactions include positive and negative contributions
and have a critical impact on the decision process for
achieving other non-functional requirements.

The Unified Process for developing OO systems provides a
relatively minimal level of support for expressing NFRs [2].
Extension mechanisms of the UML standard [8] have been
used to capture the non-functional requirements expressed in
NoFun [4, 5], a language created to provide a basis for
establishing quality models in a formal way. The work targets
the complete set of quality requirements as described in the
ISO/IEC 9126 International Standard. The authors propose the
separation of FRs and NFRs where each class is associated
with an NFR element, expressed in OCL [5].

Paper [3] discusses a sequence of systematic steps towards
an early consideration of specifying and separating
requirements. This makes it possible to identify and resolve
conflicts earlier in the development cycle and promotes
traceability of broadly scoped requirements throughout system
development, maintenance and evolution. The approach is
presented within four categories of activities: FRs
identification and specification, NFRs identification and
specification, composing requirements and analysis/design
activities. Formalism for the FRs is provided through
specifying their pre and post conditions formally using first
order predicate logic.

Our work builds upon the existing methods but differs from
them in important ways: i) this research proposal takes

685

advantage of the formal representation of components in AS-
TROM formalism, and the autonomy of components in agent-
oriented paradigm; ii) formalization of both FRs and NFRs
within the same formal framework AS-TROM so that the
NFRs can be validated and verified automatically.

V. APPROACH

Autonomic systems automatically monitor and seek
opportunities to improve their own quality characteristics such
as reliability, availability and performance. The corresponding
NFRs have to be specified formally and mapped to autonomic
elements’ behaviour so that the achievement of the above
NFRs can be monitored automatically. Behavioural changes
due to the environment and/or system evolution have to be
detected automatically, and the self-diagnosis of the system
quality against changes must be modelled, followed by the
planning of self-healing reaction when the system’s behaviour
fails to meet the NFRs requirements. The changed
configuration may be verified while the system is running
without affecting the system integrity. We are currently
working on the development of a new AS-TROM formal
language powerful enough to describe the structure and the
behaviour of the autonomic systems, as well as the non-
functional properties constraining the behaviour of the system.
The development process formalization would allow for
formal validation and verification of FRs and their
conformance to the corresponding, guarantying the high
quality of the final product and allowing for continuous
quality control on the evolving software structures.

The automation of system self-management requires solid
formal foundations for system development, validation and
verification, including integration of the NFRs into the system
formal specification. In this research, each NFRs is regarded
as a mathematical theory whose set of axioms is defined by
the required scale type of the measurement, and the empirical
observations on the attribute to measure. NFRs in this context
are regarded as abstractions of algorithms for their
quantification, without imposing restrictions on the
measurement mechanism other than the axioms specified in
the theory. TROM formalism allows for theory inclusion,
therefore, the NFRs constraining an autonomic element are to
be included in the theory of the corresponding element’s
specification, thus formalizing the mapping of non-functional
requirements to the specification of the components’ behavior.
Formally expressed NFRs within the same AS-TROM
language are formalized as theorems and should be provable
from the autonomic elements’ behavioral specification
automatically.

An important step in achieving successful NFRs monitoring
is to achieve the right balance of system quality attributes. The
quality model is a rigorous hierarchical decomposition of
NFRs for quality from their general statements to algorithms
for their evaluation (measurements). This involves
identifying the conflicts among several desired quality
attributes, and working out a satisfactory balance of attributes
satisfaction. The quality model for autonomic systems chosen
for our work is the one developed for real-time reactive
systems, and based on the TROM formalism as described in

[11]. The TROM quality model differs from the existing
quality models for reactive systems: i) the measurements are
theoretically validated, and ii) are based on the formal
specification of the system in TROM. Therefore, it allows the
assessement of quality of design solutions at early in the
development process.

The solid formal bases for the measurements specified
within the same formal framework allow for automation of the
evolving automatic system’s self-monitoring mechanism. The
research achievements in modelling of two of the most
important autonomic systems quality requirements, namely,
reliability and performance, are described below.

Reliability. The reliability assessment model based on
TROM formalism and its empirical validation has been
reported in [13, 14, 15, 16, 17, 18]. The reliability model
based on Markov chains of the system's expected change is
constructed from the system configuration specification. This
model serves as the basis of the evolution engine that
calculates the reliability prediction factors, and will be used
for formalizing the autonomic systems’ early reliability
assessment. The reliability requirements for autonomic
elements and systems have to be specified formally and
mapped to system behaviour so that the achievement of the
reliability can be monitored automatically.

Performance. The current research work includes
performance formalization within the same framework and
their crosscutting with autonomic system's behaviour. Some
of the results have been published in [19, 20].

Novelty. To the best knowledge of the authors, there is no
similar approach reported in the literature on formal
specification of non-functional requirements and the system
functional model within the same formal framework, for
autonomic systems.

VI. DISCUSSION AND NEXT STEPS

This paper is a preliminary report on the ongoing research
which main objective is the rigorous approach to developing
and evolving autonomic systems whose architecture, system
configuration, and continuous self-monitoring of their quality
are to be specified within a single formal framework.

The research is focusing on Autonomic Systems - a
significant and new strategic and holistic approach to the
design of computer-based systems. Autonomic systems will
need a mechanism to acquire and represent high-level
specifications of NFRs and map them onto lower-level
actions. We must develop and analyze algorithms and
negotiation protocols for conflicting NFRs, and determine
what bidding or negotiation algorithms are most effective.

Safety and Liveness. One of the most challenging tasks in
autonomic software system self-monitoring is to assure the
conformance to the safety and liveness properties, especially
as these systems are to be used in sensitive and often life-
critical environments such as medical systems, air traffic
control, and space applications. In AS-TROM these properties
will be expressed as invariants on the system’s behavior, that
is, it should be possible to derive those properties from the
postcondition of each the system function leading to a change
of state. The formalization of the safety and liveness

686

properties would allow for their automatic monitoring after
each state change of the system.

Mechanical Support. The AS-TROM process
formalization would allow for formal validation and
verification of FRs and their conformance to the
corresponding NFRs, guarantying the high quality of the final
product and allowing for continuous quality control on the
evolving software structures. The tool chosen for verification
purposes is PVS [9], a verification assistant that provides
mechanized support for formal specification and verification
and is based on classical, typed higher-order logic. A
mechanism for mapping AS-TROM specifications to PVS
theories has to be developed as part of this research work.

Long term objectives. The basic issue for autonomic
systems will be to combine the processing of environment and
machines to create a more effective overall computation. The
interaction between the environment and the autonomic
systems will be framed by the predictability and trustability
issues, which depend on the unexpected system behavior. The
long term work in this direction shall be contributing to
building up of a shared ground for environment–computer
interaction.

REFERENCES

[1] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, “Non-
Functional Requirements in Software Engineering”. Kluwer
Academic Publishing. 2000.

[2] R. R. Yong. “The Requirements Engineering Handbook”.
Artech House Publishers. 2004.

[3] M. Kassab, C. Constantinides, O. Ormandjieva.
“Specifying an

 Separating Concerns From Requirements to Design: A Case
Study”. Accepted at ACIT-SE 2005.

[4] Franch X., Botella P. “Putting non-functional requirements into
software architecture”. In Proceedings of the Ninth
International Workshop on Software Specification and Design,
pp. 60– 67, 1998.

[5] Pere Botella, Xavier Burgues, Xavier Franch, Mario Huerta,
 Guadalupe Salazar. “Modelling Non-Functional Requirements”,
 2001.
[6] P. Horn. “Autonomic Computing: IBM’s Perspective on the
 State of Information Technology”. IBM Manifesto, October
 2001, http://researchweb.watson.ibm.com/autonomic/manifesto
[7] J.O. Kephart, D. M. Chess. “The Vision of Autonomic

 Computing”. IEEE Computer, January 2003, pp.41-50.
[8] M. Fowler. “UML Distilled 3/e: A Brief Guide to the Standard
Object Modeling Language”. Addison-Wesley Pearson Education,

Inc. 2004.
[9] PVS: http://pvs.csl.sri.com/
[10] V.S. Alagar, R. Achuthan, D. Muthiayen, “TROMLAB: A
 Software Development Environment for Real-Time Reactive
 Systems”, Technical Report, (first version 1996, revised 1998),
 Concordia University, Montreal, Canada.
[11] O. Ormandjieva. “Deriving New Measurement for Real Time
 Reactive Systems". Ph.D. Thesis, Computer Science &
 Software Engineering Department, Concordia University,
 2002.
[12] IEEE Std.830-1998. “Software Requirements Document”.
[13] V.S. Alagar, O. Ormandjieva. “Reliability Assessment of E-
 Commerce Applications”. In Proceedings of 1st International
 Conference on E-Business and Telecommunication Networks
 (ICETE 2004), pp.30-37.
[14] V.S. Alagar, O. Ormandjieva, M. Zheng. “Two-tier Agent
 Architecture for Trusted Communication in Ad-Hoc Mobile
 Networks (Extended Abstract)”. In Proceedings of the Winter
 International Symposium on Information and Communication
 Technologies 2004 (WISICT04), pp.392-397.
[15] V.S. Alagar, M. Haydar, O. Ormandjieva, M. Zheng. “A
 Rigorous Approach for Constructing Self-Evolving Real-Time
 Reactive Systems”. Journal of Information and Software
 Technology, (2003), pp. 743-761.
[16] V.S. Alagar, O. Ormandjieva, M. Zheng. “Incremental Testing
 for Self-Evolving Timed Systems”. In Proceedings of the Third
 International Conference on Quality Software (QSIC 2003),
 p.12-19.
[17] V.S. Alagar, O. Ormandjieva,M. Zheng. “Managing Complexity
 in Real-Time Reactive Systems”. In Proceedings of the Sixth
 IEEE International Conference on Engineering of Complex
 Computer Systems (ICECCS2000), Tokyo, Japan, 2000.
[18] V.S. Alagar, Ormandjieva. “Reliability Assessment of Web
 Applications”. In Proceedings of the 26th Annual International
 Computer Software and Applications Conference (COMPSAC
 2002), pp.405-414.
[19] V.S. Alagar, O. Ormandjieva, Shi Hui Liu. “Scenario-Based
 Performance Modelling and Validation in Real-Time Reactive
 Systems”. In Proceedings of Software Measurement European
 Forum 2004 (SMEF2004).
[20] V.S. Alagar, Shi Hui Liu, O. Ormandjieva, Jian Shen.
 “Performance Assessment in Real-Time Reactive Systems”. In
 Proceedings of the 7th IASTED International Conference on
 Software Engineering and Applications (IASTED - SEA 2003),
 pp.397-206.

