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Abstract - The purpose of this work is to summarize the role of 
software reengineering in software maintenance process and to 
show the place of the software clustering process in the software-
reengineering model. The code-based graph representation is one 
of the open problems, because the results of clustering process 
depend on this representation. In this paper we discuss and 
present our observations about the code-based graph 
representation problem.  
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I. INTRODUCTION 

Companies often have legacy systems, which have to be 
maintained. Since the 1950’s over 100 billion LOC have been 
written. Legacy software is a valuable asset, which cannot be 
easy discarded or redeveloped. Something has to be done to 
help keep the cost of maintenance down. When legacy 
software has a high business value and low changeability the 
reengineering is the recommended variant to its development 
(figure 1). Chikofsky and Cross define software reengineering 
as “the examination and alteration of a subject system to 
reconstitute it in a new form and subsequent implementation 
of that form”. This definition is technology oriented while 
Arnold's definition is goal-oriented: Software reengineering is 
defined by Arnold  as “any activity that:  

• improves one's understanding of software, or,  
• prepares or improves the software itself, usually for 

increased maintainability, reusability, or evolve ability”.  
Although the two definitions do not necessarily correspond, 

both the above authors provide good introductions to software 
reengineering. 

In figure 1 we try to summarize the characteristics of 
software reengineering activity: role, processes, goals, actual 
status, main problems and their solutions and show the place 
of the software clustering process in the software-
reengineering model. 

As we see in figure 1, code-based graph representation 
algorithms and tools (Code Analysis tools) are needed to help 
software maintainers.  

 
 
 

II. THE GRAPHS IN THE SOFTWARE 
REENGINEERING AREA 

Large software systems tend to have a rich and complex 
structure. Designers typically present the structure of software 
systems as one or more directed graphs. For example, a 
directed graph can be used to describe the modules, classes, 
functions, operators of a system and their static 
interrelationships using nodes and directed edges, 
respectively. Graphs are commonly used not only for system’s 
visualization [10], but also as input for automatic clustering 
algorithms [1,2,3,10], the goal of witch is to extract the high 
level structure of the program under study. The problem of 
code-based graph representation is one of the open problems 
in software clustering area, because the results of clustering 
process depend on this representation. 

In Bunch (software clustering tool) [1,2,3] are used module 
dependency graphs (MDGs). MDG is directed graph that 
represents the software modules (e.g., classes, files, packages) 
as nodes, and the relations (e.g., function invocation, variable 
usage, class inheritance) between modules as directed edges 
(figure 3). The MDG of the clustered software systems in 
[1,2,3] are recovered automatically from its source code using 
tools such as CIA [8] (for C), Acacia [7] (for C and C++) or 
Star [9] for Turing [4]. However, even the MDGs of small 
systems can be complex. Then appropriate abstractions of 
their structure are needed to make them more understandable 
and, thus, easier to maintain [1,2,3]. Once the MDG is 
created, Bunch’s clustering algorithms can be used to create 
the partitioned MDG.  

A number of software clustering algorithms is developed to 
separate the graph’s nodes (i.e., modules) into clusters (i.e., 
subsystems). Decomposing source code components and 
relations into subsystem clusters is an active area of research. 
Numerous clustering approaches have been proposed in the 
reverse engineering literature, each one using a different 
algorithm to identify subsystems than producing an 
architectural view.  

The software reengineering literature shows that the 
problem of automatically creating abstract views of software 
structure is very computationally expensive (NPhard), so a 
hope for finding a general solution to the software is unlikely. 
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Figure 1:  Software Reengeneering: Role, 
Characteristics and problems 
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• Reusable, reengineered software costs much less than
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The reengineering goals: 
• System understanding:  
• Structural improvement  
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In [6] are used call graphs (CG) [6] as input of automatic 
clustering algorithms. Call graphs and control flow graphs 
(CFG) are commonly used in the fields of program slicing 
(figure 2) and regressing testing [5]. The observation is that 
determining the call graph for a procedural program is fairly 
simple. However, this is not the case for programs written in 
object-oriented languages, due to polymorphism. A number of 
algorithms for the static construction of an object-oriented 
program’s calls graph have been presented in the literature in 
recent years. In [6] for example, are presented three such 
algorithms on the automatic clustering of a Java program. The 
problem is that object-oriented programs have an inherently 
richer structure than those written in procedural languages, 
and so even medium sized programs produce large graphs. 
Because software clustering is a NP-hard problem, existing 
clustering tools are not able to process large graphs with 
weighted arcs and nodes, at the same time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Understanding the dynamic structure of a system is helpful 

during software maintenance. The observation is that a 
number of algorithms for the static construction of an object’s 
oriented call graph have been developed in the software 
reengineering literature in the recent years. The problem is 
that the source representation algorithms and tools must help 
software engineers extract also the dynamic structure of object 
oriented programs. Dynamic analysis is an open problem in 
software clustering. Our observation is that static analysis, 
using a tool such as Chava [11] reveals part of the complete 
design. It not reveals the relationships between the classes at 
runtime. Dynamic analysis can be used to complement static 
source code analysis, which may not provide all of the 
software information.  

In [12] Juan Gargiulo and S. Mancoridis develop a tool, 
called Gadget, which try to extract the dynamic information of 
an Object Oriented Java program. A DDG (dynamic 
dependence graph) is created (figure 4), where nodes 
represent classes or objects and edges represent relations (i.e. 
method invocation) between two objects or between a static 

figure 3. 
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figure 2. 
Procedure M and  the resulting CFG 
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class and an object. The problem is that Gadget presents only 
the dynamic (running) relations and does not show the static 
relations such as inheritance relations. 

III. CONCLUSION 

Software supports many business, government, and social 
institutions. As the processes of these institutions change, so 
must change the software that supports them. Changing 
software systems that support complex processes can be quite 
difficult, as these systems can be large (e.g., thousands or 
even millions of lines of code) and dynamic. There is a need 
to develop sound software reengineering methods and tools to 
help software engineers understand and maintain large and 
complex systems so that they can modify the functionality or 
repair the known faults of these systems.  

In this paper we try to summarize the characteristics of 
software reengineering activity: role, processes, goals, actual 
status, main problems and their solutions and to show the 
place of the software clustering process (figure 1) in the 
software-reengineering model. 

In this paper we underline that the oriented graphs are 
commonly used in much software reengineering activities: 
automatic-clustering algorithms, in the fields of program 
slicing and regressing testing.  

The observation is that a number of algorithms for the static 
construction of an object’s oriented graph have been 
developed in the software reengineering literature in the 
recent years. But these clustering tools are not able to process 
large graphs with weighted arcs and nodes, at the same time. 
The problem is that even medium object-oriented programs 
produce such graphs because of polymorphism.  

Dynamic analysis is an open problem in software 
reengineering. The source representation algorithms and tools 
must help software engineers extract also the dynamic 
structure of object oriented programs but there isn’t enough 
experience in this field. 
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