

691

Code-Based Graph Representations And Software
Reengineering

Violeta T. Bojikova1, Mariana Ts. Stoeva2

1 Violeta Bojikova is with the Department of Computer
Science Varna Technical University, Bulgaria,
e-mail: vbojikova2000@yahoo.com
2 Mariana Stoeva is with the Department of Computer
Science Varna Technical University, Bulgaria
e-mail: mariana_stoeva@abv.bg

Abstract - The purpose of this work is to summarize the role of
software reengineering in software maintenance process and to
show the place of the software clustering process in the software-
reengineering model. The code-based graph representation is one
of the open problems, because the results of clustering process
depend on this representation. In this paper we discuss and
present our observations about the code-based graph
representation problem.

Keywords – software reengineering, software-clustering
algorithms, software representation

I. INTRODUCTION

Companies often have legacy systems, which have to be
maintained. Since the 1950’s over 100 billion LOC have been
written. Legacy software is a valuable asset, which cannot be
easy discarded or redeveloped. Something has to be done to
help keep the cost of maintenance down. When legacy
software has a high business value and low changeability the
reengineering is the recommended variant to its development
(figure 1). Chikofsky and Cross define software reengineering
as “the examination and alteration of a subject system to
reconstitute it in a new form and subsequent implementation
of that form”. This definition is technology oriented while
Arnold's definition is goal-oriented: Software reengineering is
defined by Arnold as “any activity that:

• improves one's understanding of software, or,
• prepares or improves the software itself, usually for

increased maintainability, reusability, or evolve ability”.
Although the two definitions do not necessarily correspond,

both the above authors provide good introductions to software
reengineering.

In figure 1 we try to summarize the characteristics of
software reengineering activity: role, processes, goals, actual
status, main problems and their solutions and show the place
of the software clustering process in the software-
reengineering model.

As we see in figure 1, code-based graph representation
algorithms and tools (Code Analysis tools) are needed to help
software maintainers.

II. THE GRAPHS IN THE SOFTWARE
REENGINEERING AREA

Large software systems tend to have a rich and complex
structure. Designers typically present the structure of software
systems as one or more directed graphs. For example, a
directed graph can be used to describe the modules, classes,
functions, operators of a system and their static
interrelationships using nodes and directed edges,
respectively. Graphs are commonly used not only for system’s
visualization [10], but also as input for automatic clustering
algorithms [1,2,3,10], the goal of witch is to extract the high
level structure of the program under study. The problem of
code-based graph representation is one of the open problems
in software clustering area, because the results of clustering
process depend on this representation.

In Bunch (software clustering tool) [1,2,3] are used module
dependency graphs (MDGs). MDG is directed graph that
represents the software modules (e.g., classes, files, packages)
as nodes, and the relations (e.g., function invocation, variable
usage, class inheritance) between modules as directed edges
(figure 3). The MDG of the clustered software systems in
[1,2,3] are recovered automatically from its source code using
tools such as CIA [8] (for C), Acacia [7] (for C and C++) or
Star [9] for Turing [4]. However, even the MDGs of small
systems can be complex. Then appropriate abstractions of
their structure are needed to make them more understandable
and, thus, easier to maintain [1,2,3]. Once the MDG is
created, Bunch’s clustering algorithms can be used to create
the partitioned MDG.

A number of software clustering algorithms is developed to
separate the graph’s nodes (i.e., modules) into clusters (i.e.,
subsystems). Decomposing source code components and
relations into subsystem clusters is an active area of research.
Numerous clustering approaches have been proposed in the
reverse engineering literature, each one using a different
algorithm to identify subsystems than producing an
architectural view.

The software reengineering literature shows that the
problem of automatically creating abstract views of software
structure is very computationally expensive (NPhard), so a
hope for finding a general solution to the software is unlikely.

692

Figure 1: Software Reengeneering: Role,
Characteristics and problems

Use Software reengineering tools

Costly and low
effective process

Is now: The Solution:

Reverse
engineering

Restructuring Forward
Engineering

Legacy
Software

What to do?

Includes now:

New research
activity

Browser
And

Viewers

Code
improvement
Tools
(restructuring
tools) Reverse engineering tools:

Code Analysis tools
Clustering tools (parcers).

Reengineering process
management

tools

Clustering algorithms – an active research
domain

Main research problems:
- Software clustering algorithms development
- Software clustering algorithms evaluation

Tools for forward
engineering

(Code generation tools)
Extract static
information from the
software source code
(Adacia tool for C++
code, Star – Object
Oriented Turing,
Chava - Java).
Exstract dynamic
information,
information based on
the source code
implementation (Look
for C++, Gadjet for
Java).

Clustering tools: Bunch,
Rigi, Arch, Hawa, Javac,
Jport)

Graph Construction
Algorithms

To present a software
structure, for example as a
call graph, MDG, DDG

Redevelopment
Continuous

improvement

Modernization
Reengineering

The raisons to software reengineer:
• Software maintenance is very costly, slow and

unreliable. Cost of maintenance increase when the
structure and the quality of system decreases due to
extensions

• The software cannot be discarded because of its
importance and big value for the organization;

• Reusable, reengineered software costs much less than
redeveloped code.

The reengineering goals:
• System understanding:
• Structural improvement
• Components recovery
• System Migration

693

In [6] are used call graphs (CG) [6] as input of automatic
clustering algorithms. Call graphs and control flow graphs
(CFG) are commonly used in the fields of program slicing
(figure 2) and regressing testing [5]. The observation is that
determining the call graph for a procedural program is fairly
simple. However, this is not the case for programs written in
object-oriented languages, due to polymorphism. A number of
algorithms for the static construction of an object-oriented
program’s calls graph have been presented in the literature in
recent years. In [6] for example, are presented three such
algorithms on the automatic clustering of a Java program. The
problem is that object-oriented programs have an inherently
richer structure than those written in procedural languages,
and so even medium sized programs produce large graphs.
Because software clustering is a NP-hard problem, existing
clustering tools are not able to process large graphs with
weighted arcs and nodes, at the same time.

Understanding the dynamic structure of a system is helpful

during software maintenance. The observation is that a
number of algorithms for the static construction of an object’s
oriented call graph have been developed in the software
reengineering literature in the recent years. The problem is
that the source representation algorithms and tools must help
software engineers extract also the dynamic structure of object
oriented programs. Dynamic analysis is an open problem in
software clustering. Our observation is that static analysis,
using a tool such as Chava [11] reveals part of the complete
design. It not reveals the relationships between the classes at
runtime. Dynamic analysis can be used to complement static
source code analysis, which may not provide all of the
software information.

In [12] Juan Gargiulo and S. Mancoridis develop a tool,
called Gadget, which try to extract the dynamic information of
an Object Oriented Java program. A DDG (dynamic
dependence graph) is created (figure 4), where nodes
represent classes or objects and edges represent relations (i.e.
method invocation) between two objects or between a static

figure 3.

figure 3.

figure 2.
Procedure M and the resulting CFG

694

class and an object. The problem is that Gadget presents only
the dynamic (running) relations and does not show the static
relations such as inheritance relations.

III. CONCLUSION

Software supports many business, government, and social
institutions. As the processes of these institutions change, so
must change the software that supports them. Changing
software systems that support complex processes can be quite
difficult, as these systems can be large (e.g., thousands or
even millions of lines of code) and dynamic. There is a need
to develop sound software reengineering methods and tools to
help software engineers understand and maintain large and
complex systems so that they can modify the functionality or
repair the known faults of these systems.

In this paper we try to summarize the characteristics of
software reengineering activity: role, processes, goals, actual
status, main problems and their solutions and to show the
place of the software clustering process (figure 1) in the
software-reengineering model.

In this paper we underline that the oriented graphs are
commonly used in much software reengineering activities:
automatic-clustering algorithms, in the fields of program
slicing and regressing testing.

The observation is that a number of algorithms for the static
construction of an object’s oriented graph have been
developed in the software reengineering literature in the
recent years. But these clustering tools are not able to process
large graphs with weighted arcs and nodes, at the same time.
The problem is that even medium object-oriented programs
produce such graphs because of polymorphism.

Dynamic analysis is an open problem in software
reengineering. The source representation algorithms and tools
must help software engineers extract also the dynamic
structure of object oriented programs but there isn’t enough
experience in this field.

REFERENCES

[1]. Mitchell, Mancoridis, Traverso, “ Search Based Reverse
Engineering”, In the ACM Proceedings of the 2002
International Conference on Software Engineering and
Knowledge Engineering (SEKE'02), Ischia, Italy, July,
2002. pp. 431-438

[2]. Spiros Mancoridis, Brian Mitchell, C. Rorres, Y. Chen,
and E. R. Gansner, Using Automatic Clustering to
Produce High-Level System Organizations of Source
Code, IEEE Proceedings of the 1998 International
Workshop on Program Understanding (IWPC'98)

[3]. Spiros Mancoridis, Brian Mitchell, Y. Chen, and E. R.
Gansner, Bunch: A Clustering Tool for the Recovery and
Maintenance of Software System Structures, IEEE
Proceedings of the 1999 International Conference on
Software Maintenance (ICSM'99)

[4]. Mary Jean Harrold, Cregg Rothermel, “A Coherent
Family of Code-Based Graph Representations for
Object-Oriented Software”, Dep. Of Computer and
Information Science, Ohao State University

[5]. Sinha, S., Harrold, M. J., and Rothermel, G. 2000.
Interprocedural control dependence. Technical Report
GIT-CC-00-17 (June), College of Computing, Georgia
Institute of Technology.

[6]. Derek Rayside, Steve Reuss, Erik Hedges, and Kostas
Kontogiannis. The effect of call graph construction
algorithms for object-oriented programs on automatic
clustering. In Margaret-Anne Storey, Anneliese von
Mayrhauser, and Harald Gall, editors, IWPC’00, pages
191–200, Limerick, Ireland, June 2000.

[7]. Y. Chen, E. R. Gansner, and E. Koutsofios. A C++ Data
Model Supporting Reachability Analysis and Dead Code
Detection. In Proceedings of the European Conference
on Software Engineer-ing/ Foundations of Software
Engineering, 1997

[8]. B. Krishnamurthy. Practical Reusable Unix Software.
John Wiley & Sons, Inc., New York, 1995.

[9]. S. Mancoridis, R. C. Holt, and M. W. Godfrey. A
Program Understanding Environment based on the “Star”
Approach to Tool Integration. In Proceedings of the
Twenty Second ACM Computer Science Conference,
pages 60–65, March 1994.

[10]. В.Т.Божикова, М.Н.Карова “Създаване, визуализация
и операции на програмни структури”, Proceedings of
the Int’l Scientific Conference on Energy and
Information Systems and Technologies, Vol.3., Bitola,
pp. 813-819, June 7-8, 2001

[11]. Jeffrey Korn etc. “Chava: Reverse engineering and
Tracking of Java Applets”

[12]. Spiros Mancoridis and Juan Gargiulo, “Gadget: A Tool
for Extracting the Dynamic Structure of Java Programs”,
ACM/IEEE Proceedings of the 2001 International
Conference on Software Engineering and Knowledge
Engineering (SEKE'01)

