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New PSPICE Modeling and Simulation Method for 
Multiple Mode Oscillation for ECAM   

D. N. Vizireanu1, I. Pirnog2, R. M. Udrea3 
Abstract - This paper presents new methods of simulating the 

algebraic functions as well as the solving of non-linear 
differential equations using PSPICE, one of the most well known 
circuit analysis program. A new negative resistance oscillator 
model was used for the single and multiple mode LCR networks 
of ECAM. The results obtained by numerical integration of the 
differential equations using a new PSPICE method are compared 
with the analytic approximations. 
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I. INTRODUCTION 

This paper presents new methods of simulating the 
algebraic functions as well as the solving of non-linear 
differential equations using PSPICE. 

In this paper we present the following aspects: integrated 
circuits simulation, PSPICE sub circuits achievement for 
simulating algebraic functions and solving non-linear 
differential equations. 

A new negative resistance oscillator model was proposed 
by Walker and Connelly [1], [2]. In this paper an analytic 
approximation to the periodic solutions for LCR networks of 
Emitter Coupled Astabil Multivibrator (ECAM) is obtained.  

These predictions are compared with the results obtained by 
numerical integration of the differential equations using a new 
PSPICE method. 

II. PSPICE ALGEBRAIC FUNCTIONS SIMULATION 

The circuit from Fig. 1 is used for showing the way that 
PSPICE works in simulating algebraic functions.  

And we will also use the equations:  
 

 3 2 4, ln iE E V V= = ,  (1) 
We make the presumption that the voltage commanded 

source 4E  is:  

 ( )12
4 3 210E E E= − , (2) 
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Fig. 1. Function generation sub circuit. 

then:  4
3 2 1210

EE E− =    (3) 

Also, if we consider that 2E  and 3E  are much bigger 

than 12
4 10E , we obtain: 

 3 2E E= . (4) 
Using PSPICE there can be generated a set of algebraic 

functions using the circuit from Fig. 1 and Eq. (5). This idea is 
based on the following presumptions: 
a) 2E  and 3E  have a polynomial dependence for  iV  
and 4E ; 

b) ( )4 iE F V= ; 
c) it is possible that an equilibrium is obtained in the 
conditions of Eq. (6). 

Example, if the output voltage 4E  must be: 

 4 ln iV V= , or 4V
iV e=  (5) 

where iV  is the input voltage, if we impose: 
 3 iE V= , (6) 
then, in the conditions of Eq. (5), we obtain: 
 4V

iV e= , or 4 ln iV V=  (7) 
Using the same method there can be generated also other 

algebraic functions that can be represented as a polynomial 
decomposition. 

Integration simulation is based on the dependence between 
the voltage and the current of a capacitor.  

The circuit that corresponds to this function is represented 
in Fig. 2. 4R  is used in parallel with the capacitor to allow 
achieving of static points at the start of the PSPICE algorithm. 
Its value must be as big as possible in order to have no 
influence in the function of the circuit.  

The loading current of the capacitor simulated by the 
current source 4F , commanded by the voltage source iV  
(where: 3 10R k= Ω ) is: 

4
3

iVF
R

=            (8) 
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Fig. 2. The integration subcircuit. 

 
The 4V  voltage can be written: 

 4 4
4

1V F dt
C

= ∫ . (9) 

If 5 4E V=  and 4 100C Fµ= , Eq. (8) becomes: 

 5 iV V dt= ∫ . (10) 

With the help of the 4C  capacitor we can control the initial 
conditions for integration. 

III. SOLVING THE NONLINEAR DIFFERENTIAL 
EQUATIONS FOR THE EMITTER-COUPLED ASTABLE 

MULTIVIBRATOR (ECAM) 

In the scientific literature there are a multitude of 
algorithms for solving the nonlinear differential equations. An 
approach needs two aspects: 
a good knowledge of the mathematical algorithm, for 
choosing the most appropriate algorithm to use; 
the knowledge of a programming language for the 
implementation of the algorithm.  

The purpose of this paragraph is to present a new method, 
simple and fast, to solve the nonlinear differential equations 
using PSPICE. 

A. Single-Mode E.C.A.M. 

In [1], [2] Walker and Connelly proposed a new negative 
resistance oscillator model for a class of current, negative 
resistance oscillators. 

The equivalent circuit is presented in Fig. 3. 

 
Fig. 3. The single-mode ECAM 

 
The model [1] between x  and 'x  is: 

 
1ln

2 1
b c iv a i

c i
− ⋅⎛ ⎞= − ⋅ + ⎜ ⎟+ ⋅⎝ ⎠

 (11) 

where: 

12 , 2 ,Ra RC b V c
L

= = =
 (12) 

The nonlinear differential equation for the single-mode 
oscillator circuit in Fig. 3 is: 

 
2

2 2 2

10 1
1

d i R a bc di i
dt L R a c i dt LC

− ⎛ ⎞= + + ⋅ +⎜ ⎟− −⎝ ⎠
 (13) 

With the notation, 

 2 1 , ,bc a R
LC a R L

C

ω β ε −
= = =

−
 (14) 

and the changing of variables: 

 
,X ti t

C ω
→ →

 (15) 
the Eq. (13) becomes: 

 
2

2 21 0
1

d x dx x
dt x dt

βε ⎛ ⎞− − + =⎜ ⎟−⎝ ⎠
 (16) 

The Eq. (16) can be written: 

 
2 2

2
2 2,a b c a

d x d xE E E E x
dt dt

= + + = −   (17) 

 ( ) ( )2 21 , 1b c
dxE x E x x
dt

ε β= − − = −   (18) 

B. N-Mode E.C.A.M. 

The equivalent circuit is presented in Fig. 4. 
 

 
Fig. 4. The n-mode ECAM 

 
The differential equations for the n-mode ECAM circuit 

were derived [2]: 
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di
dt ibc

R a L c
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≠
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⎥
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=

∑

∑

∑
 (19) 

with the conditions: 
1

1 1
n

j
j

c i
=

⎛ ⎞
− < <⎜ ⎟

⎝ ⎠
∑ . 

The transformation of variables: 
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 ; 1,j
j

j

x
i j n

C
→ =  , ; 1,j

j
j

a R
x j n

L
−

= =  (20) 

and 2 2
1 2

1 1 2 2

1 1;
L C L C

ω ω= = , ; 1,j
j

bc j n
a R

β = =
−

, (21) 

 ; 1,j
j

a j n
a R

τ = =
−

, (22) 

allows us to obtain the dimensionless forms: 

 

2
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=
≠

=

⎡ ⎤
⎢ ⎥
⎢ ⎥− − +⎢ ⎥⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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=

∑

∑
∑

  (23) 

We investigate these equations with a new computational 
method using PSPICE and to determine an analytical 
approximation for periodic solutions. 
The interest for these equations is based on the fact that they 
represent a model of equations that describe a new class of 
nonlinear differential equations. Enforcing quasi-linear with: 

 1 1 2 2, , ..., n nπ ω π ω π ω<< << <<  (24) 

permits approximate solutions for Eq. (23): 

 
( ) ( ) ( ) ( )
( ) ( )

1 1 1 2 2 2sin , sin

sin , 1,j j j

x t x t

x t j n

α θ α θ

α θ

= =

= =
 (25) 

with: 

 
( ) ( )
( )

1 1 1 2 2 2, ,

, 1,j j j

t t t t

t t j n

θ ω θ ω

θ ω

= + Φ = + Φ

= + Φ =
. (26) 

The method of equivalent linearization [4] will permit 
construction of the time derivatives of (23). Applying the 
linearization method to (23) with (24) assumed gives: 

2 2
2 21 1 1 1

12 2
11

2
1 1 1

2 2

n
k

k
k j

cd x
c

dt c
αα α β

α
α =

≠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − − −⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑  (27) 

2 2
2 2

22 2
1

2
1 1 1

2 2

n
j j j j

kj
k j

d x c
c

dt c
α α β α

α
α =

≠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − − −⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑  (28) 

With: 1 20 , 0 ,...., 0ndd d
dt dt dt

ΦΦ Φ
= = =   (29) 

The steady-state amplitudes of oscillation may be obtained by 
equating Eqs. (27) and (28) to zero. 
We can have analytic approximation to the periodic solutions. 
These predictions are compared with the results obtained by 
PSPICE numerical integration of the differential equations. 

C. Example: Double-Mode E.C.A.M. 

The equivalent circuit is presented in Fig. 5. 

 
Fig. 5. The double-mode ECAM 

Applying the analytical method from the multiple mode 
ECAM for the double mode ECAM we obtain : 

 
2 2

2 21 1 1 1 2
12 2

1

2
1 1 1

2 2
d x c

c
dt c
α α β α

α
α

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − − −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (30) 

 
2 2

2 22 2 2 2 1
22 2

2

2
1 1 1

2 2
d x c

c
dt c
α α β α

α
α

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − − −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (31) 

Using the following definitions: 
 2 2

1 2 1 2 1 20 , 0Y C Y Cα α= > = > , (32) 
 

we can rewrite Eqs. (30) and (31): 

 
2

1 2
2

1 1

11 0
4 2
Y Y
β β

⎛ ⎞
+ − + =⎜ ⎟
⎝ ⎠

 (33) 

 
2

2 1
2
2 2

11 0
4 2
Y Y
β β

⎛ ⎞
+ − + =⎜ ⎟
⎝ ⎠

. (34) 

We have the conditions: 
 1 20 1 ; 0 1β β< < < <               (35) 
The next step is the comparison of the analytical 
approximations for the periodic solutions and the results 
obtained by PSPICE numerical integration of the differential 
equations. 

IV. THE PSPICE METHOD TO SOLVE NONLINEAR 
EQUATIONS FOR E.C.A.M. 

PSPICE has become the standard computer program for 
most electrical simulation.  

Higher-level abstraction and hierarchy can be modeled 
using controlled sources and subcircuits blocks. The nonlinear 
function applies only to the time domain. PSPICE supports 
the polynomial sources.  

A functional model for single mode is presented in Fig. 6 
and for double mode in Fig. 7. 
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Fig. 6. PSPICE equivalent scheme for single mode nonlinear 

differential equation 

 
Fig. 7. PSPICE blocks (double mode) 

 

Addition and multiplication (CPU block in Fig. 7) can be 
achieved with polynomial voltage-controlled current source 
(VCCS): 

( ) ( ) ( ) ( )3 0 2 1 0 2 0 0 1 * 3 1 2EA POLY V V V= +  

( ) ( ) ( ) ( )4 0 2 1 0 2 0 0 0 0 0 1 * 3 1 2EB POLY V V V= +  

where ( ) ( ) ( ) ( )1 , 2 , 3 , 4V V V V  are voltages at nodes 1, 2, 
3 and 4, in reference to ground (node 0).  
  The integrator (INT blocks in Fig. 7): 

 ( ) ( )1
c cV t i t dt v

C ∞= +∫  (36) 

is used in PSPICE to model the capacitor. If 

 ( ) i
c

Vi t
R

=  (37) 

with 10R k= Ω  and 100C Fµ= : 

 ( )c iV t V dt v∞= +∫ . (38) 

 If we have (EQ blocks in Fig. 7): 

 4
3 2 1210

EE E− =  (39) 

and: 
 ( )12

2,3 4 4 3 2, 10E E E E E<< = −   (40) 
giving:  
 3 2E E=     (41) 
The PSPICE program has 4 block levels. 
 
 

INPUT DATA block: using controlled sources we have eight 
parameters:  

1 1 1 1 2 2 2 2, , , , , , ,π τ ω β π τ ω β . 
INT blocks: compute the integrator blocks, here are the initial 
conditions. 
CPU block: here we have multiplication, addition and return 

1cE  and 11cE . 
EQ blocks: close the loops, with relations 1 1cX E=  
and 2 11cX E= . 
The dimensionless forms for the PSPICE simulation are: 

''
1 1cx E=  

 
( ) ( )

( )

2 2'' '
1 1 1 2 1 1 1 2 1

22 '
1 1 1 1 1 1 1 2 2

1cE x x x x x x

x x x x

π β

ω π τ β τ

⎡ ⎤= + + − − + −⎣ ⎦
⎡ ⎤− + − − +⎣ ⎦

   (42) 

''
2 11cx E=  

 
( ) ( )

( )

2 2'' '
11 2 1 2 2 2 1 2 2

22 '
2 2 2 2 2 2 1 2 1

1cE x x x x x x

x x x x

π β

ω π τ β τ

⎡ ⎤= + + − − + −⎣ ⎦
⎡ ⎤− + − − +⎣ ⎦

(43) 

V. RESULTS OF NUMERICAL INTEGRATION 

Using the PSPICE program we compare the theoretical 
results with the result of numerical computation.  

Over 200 runs with several initial conditions prove that we 
can have a stable oscillation for double and multiple-mode 
ECAM. The general prediction error is 10 %. 

VI. CONCLUSIONS 

In this paper were introduced a new and improved PSPICE 
method for simulating linear and nonlinear equations. 

An analytic approximation to the periodic solutions for the 
single and double-mode LCR networks of E.C.A.M. is 
obtained.  

A PSPICE method has been proposed to solve the nonlinear 
differential equations.  

Over 200 sets of initial conditions and parameters prove 
that the obtained results were in a good agreement with 
theoretical predictions. 
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