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Small-Signal Models of Heterojuction Bipolar Transistors 
Based on Neural Networks  

Vera Marković, Aleksandar Stošić 

 
 Abstract: Heterojunction bipolar transistors are  considered to 
be a promising technology in microwave wireless 
communications. A convenient approach for small-signal 
modeling of heterojunction bipolar transistors based on neural 
networks is presented in this paper. Developed neural models 
enable an efficient prediction of device S parameters over the 
whole frequency range and over the broad ranges of operating 
conditions. Testing on the input data not used in the training 
procedure shows good accuracy of the model. 
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I. INTRODUCTION 

 Heterojunction Bipolar Transistors (HBT) have become 
very promising devices for different applications at the 
microwave and millimeter-wave frequencies [1], [2]. For 
example, HBT's are used for power amplifiers as well as for 
low noise amplifiers in mobile communication systems. This 
device tecnology is considered as very convenient for  
RF front-end circuits in next-generation wireless 
communications.  
 Important condition for any successful design work is the 
availability of efficient and accurate device models. During 
the last decade a tremendous work has been done for 
developing physical and empirical HBT models [3],[4]. 
Despite this fact, we still do not have an unified, accurate 
model standard for HBTs. The main reason is that the device 
physics is very complicated and the range of operating 
conditions is broad. The existing models based primarily on 
the physical background are inconvenient because of too 
many coefficients that are difficult to extract. The other 
models are mostly based on the traditional optimisation 
techniques or on the direct extraction of the equivalent circuit 
elements. 
 Last years, from the the aspect of efficiency, accuracy and 
simplicity, neural network approach has been  considered to 
be a good solution for microwave device modeling [5]. As 
highly nonlinear structures, neural networks are able to model 
nonlinear relations between two different data sets. Once 
trained, the neural model provides fast response for different 
input vectors that in principle can cover the whole operating 
range. A very important property of neural networks is 
generalisation capability [6], which provides sufficiently 
accurate response for different input vectors not included in 
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the training set, without additional computational efforts or 
new measurements.  
 Neural network approach has recently been proposed for 
modeling of microwave transistors for both small-signal and 
large-signal applications, but there are still not too many 
published results in this field. Most of them are related to the 
standard microwave FETs (MESFETs and HEMTs). The 
authors' results related to the development of small-signal and 
noise neural models of MESFETs and HEMTs have been 
presented in [7]-[9]. On the other hand there are only a few 
published results in the area of HBT modeling by using the 
neural network approach [10]. 
 In this paper, the development of neural models for 
AlGaAs/GaAs HBTs is presented. The attention is paid to 
small-signal HBT applications. The neural models enable an 
efficient prediction of transistor's S parameters over the wide 
frequency and bias condition ranges.  

II. ADVANTAGES OF THE HBT'S FOR WIRELESS 
COMMUNICATION APPLICATIONS 

 The heterojunction bipolar transistors are composed of two 
different semiconductor materials with different band gap 
widths [11]. AlxGa1-xAs/GaAs npn structure is used very often 
and its application has matured to commercial level. A heavily 
doped n+ GaAs layer is grown first for the collector contact, 
followed by a lightly doped n GaAs layer for the collector. A 
heavily doped p+ GaAs layer is used for the base. Again, a 
wide-band-gap AlGaAs layer is grown for the emitter. 
Heavily doped n+ GaAs layer is grown to facilitate the 
fabrication of low-resistance ohmic contacts.  
 High injection efficiency is obtained in HBTs by using a 
material with a larger energy band gap for the emitter than 
that used for the base material. The large energy band-gap 
emitter blocks injection of holes from the base. Therefore, the 
doping concentration in the base and emitter can be adjusted 
over a wide range with little effect on injection efficiency. 
Thereby, HBT can provide good current gain simultaneously 
keeping lower base resistance and parasitic capacitance than 
conventional bipolar transistors. Due to this advantages, HBT 
provide a cutoff frequency Tf  over 100 GHz. Hence, in 
comparison with Si bipolar junction transistors (BJTs), HBTs 
show better performance in terms of emitter injection 
efficiency, base resistance, base-emitter capacitance, and 
cutoff frequency. They also offer good linearity, low phase 
noise and high power-added efficiency. Due to good linearity 
properties in operational rating, HBT could be used in RF 
amplifiers for mobile communication. 
 In comparison with field effect transistors, HBT processing 
requires less demanding lithography, therefore, HBTs can cost 
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less to fabricate and can provide improved lithographic yield. 
This technology can also provide higher breakdown voltages 
and easier broad-band impedance matching. 

III. MODELING OF THE HBT S PARAMETERS USING 
NEURAL NETWORKS 

 The HBT data that can be found in the manufacturer's data 
sheets are mostly limited to a number of discrete frequency 
points and, in the best cases, at a few bias conditions. On the 
other hand, reliable and accurate models of HBTs for whole 
frequency operating range and for wide bias condition ranges 
are required for the optimisation and design of microwave 
active circuits based on HBT technology. In this paper, neural 
network models are presented that can predict magnitudes and 
angles of all four S parameters of HBTs for any frequency and 
bias condition point within the transistor's operating range. 
For this purpose, a MLP (Multi-Layer Perceptron) network 
structure [6] has been used. The network has four layers: one 
input layer, two hidden layer, and one output layer.  The 
number of neurons in the input and output layers is 
determined by the chosen number of input and output 
parameters. In this case, there are three neurons in the input 
layer that correspond to the DC bias cV , DC base current bI , 
and frequency f, and eight neurons in the output layer that 
correspond to the magnitudes and angles of the scattering 
parameters.  
 Neural network has been trained using a back-propagation 
algorithm [6]. A training set could be obtained by 
measurements, or from the simulation by using some other, 
often very complex model that requires much efforts and time. 
It is very important that the whole operating range of the 
device is adequately covered by the training set data. In this 
research a training set is generated by using the experimental 
data.  
 In principle, there are two approaches for the selection of 
number of neurons in hidden layers. The first approach is to 
perform the training procedure with a fixed number of 
neurons that is chosen in advance. The second one  is to train 
several neural networks with different number of neurons in 
the hidden layers and select the best neural network 
comparing all models. In this research we have used the 
second approach.  
 In order to compare models’ accuracy, average test error 
(ATE [%]), worst-case error (WCE [%]), and the Pearson 
Product-Moment correlation coefficient ( r ) between the 
referred and the modeled data have been calculated. The 
correlation coefficient indicates how well the modeled values 
match the referent values, i.e. a value near 1 indicates an 
excellent predictive ability. It is important to note that the test 
procedure has been done not only for the data from the 
training set, but also for the data that are not used in the 
training process, with the aim to check the generalization 
capability of developed neural networks.  

IV. MODELING RESULTS 
 In this research we have modeled six different AlGaAs 
HBT’s, within 0.05÷40 GHz frequency range. The data for 
training sets that we used in modeling procedure had been 
obtained by collaboration with a microwave laboratory at 

Northeastern University, Boston, USA, where HBT S-
parameter measurements were performed.  
 With the aim to illustrate the effectiveness and accuracy of 
neural modeling procedure, the results for a HBT device 
marked as HBT40020-002-8 are presented here. The total 
number of S parameters data used in training and test 
procedure for the selected HBT transistor was 5880. The data 
refers to the frequency range (0.05÷40) GHz. The frequency 
range was divided into four subranges as follows: first 
subrange (0.05÷0.5) GHz with 0.05 GHz step, second 
subrange (0.5÷1) GHz with 0.1 GHz step, third subrange 
(1÷10) with 1 GHz step, and fourth subrange (10÷40) GHz 
with 2 GHz step. Therefore, operating frequency range was 
covered with 35 discrete frequency points. S parameters were 
measured for different combination DC collector bias and 
base current in the whole frequency range. DC collector bias 
had the fallowing values: 1V, 3V, 4V, and DC base current 
had the fallowing values [µA]: 22, 39, 61 107, 195, 401 and 
791. Therefore, the measurements were performed at 735 
operating points and eight S parameter data (magnitudes and 
angles) correspond to each point: Mag(S11), Ang(S11), 
Mag(S12), Ang(S12), Mag(S21), Ang(S21), Mag(S22) i Ang(S22).  
Training set was obtained by extracting 595 data points from 
the measurement data. Therefore the training set contained 
4760 S-parameters data. In order to check the generalization 
capability of neural network, a test set is generated from the 
rest of data points containing 1120 S-parameters data. 
 With the aim to avoid the errors caused by a rapid change of 
some S parameters angle characteristics between the values  -
180° and +180°, a conversion of the angle range from (-
180÷180)° to the range (0÷360)° was performed.  
 Several neural networks with different number of hidden 
neurons were trained using the same training set. Number of 
hidden neurons varied between 9 and 16 neurons. The number 
of training epoch each network was limited on maximum 180. 
Time needed for training process on a Pentium 4 with 
processor declared on 2500+ and 512MB RAM was two hour 
and 15 minutes. However, once trained, the network provides 
fast response for different input vectors. 
 In order to improve the accuracy of neural models, 
multiplied training of the same network was performed. 
Namely, every new training process on the same neural 
network generates different errors. The reason for that is 
random setting of initial values of neural networks' weights 
and bias for each new training process. Therefore, in this 
research triple training process on each neural network has 
been performed with the aim to achieve better accuracy of the 
model. These models have then been applied to get the 
scattering parameter values for various bias values different 
from the ones used for training. The simulated results were 
compared with experimentally obtained data. On the basis of 
that, a model marked as 2M4_16_15 has been selected as the 
best model. The number 2 denotes second successive selected 
neural network training. The number 4 shows that the neural 
network has four layers. Numbers 16 and 15 denote the 
number of neurons in the first and second hidden layer, 
respectively. 
 As an illustration of selected model's accuracy, the scatter 
plots (correlation coefficient characteristics) for Mag(S) and 
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Angle(S) are shown in Fig. 1, where the outputs of the neural 
model are given on the Y axis and the experimental data are 
given on the X axis. It is important to note that the inputs in 
the neural model used for this calculation do not belong to the 
training set. It can be seen that simulated values match the 
measured data with a great accuracy forming linear 
correlation characteristics. 
 Fig. 2 shows the magnitudes and angles of all 
four S parameters versus frequency, obtained by 
using the chosen neural model, at four different bias 
points that have not been included in the training 
set: 

(1) 1VVc = , AIb µ107= ;   (2) 3VVc = , AIb µ39= ; 
(3) 3VVc = , AIb µ195= ;  (4) V Vc 4= , AIb µ107= . 

For the comparison purpose, the corresponding 
experimental data are shown in the same figure. It can be seen 
that there is an excellent agreement of our model with the 
measured values. That shows that the developed neural model 
has a good generalisation ability.  

V. CONCLUSION 
 The obtained results show that the neural network approach 
can be used as an efficient tool for small-signal modeling of 
HBT transistors. HBT neural models enable accurate 
prediction of magnitudes and angles of S parameters over the 
whole frequency range and over the broad ranges of operating 
conditions. In principle, some additional effects like the 
temperature could also be involved by including new neurons 
into the input layer and and by using appropriate training sets. 
 In comparison with other modeling approaches that could 
be applied for novel active devices used in modern 
communication systems, neural network approach has 
advantages from the aspect of simplicity, efficiency and 
accuracy. An insight into the physical operating mechanism is 
not necessary since a black-box approch is used. Neural 
network models provide simple and reliable prediction of 
device characteristics and can be easily implemented within 
the standard microwave circuit simulators.  
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Figure 1. Scatter plots of the neural network output data versus the experimental (target) data:(a) magnitude and (b) angle of S parameters
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Figure 2. Results for S parameter characteristics obtaine by the neural model, compared to the experimental data 


