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Self-Shrinking p-adic Cryptographic Generator 
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Abstract – A new cryptographic pseudo random number 

generator (PRNG), called Self–Shrinking p−adic Generator 
(SSPG), is proposed in this paper. The SSPG sequence is 
evaluated and its balancing is proved. The results of statistical 
analysis of SSPG sequence are given. They show that the 
sequence generated by a SSPG is uniform, scalable, 
uncompressible, consistent, unpredictable and has large period. 
This gives the reason to consider the SSPG as suitable for a 
particular software cryptographic application in stream ciphers. 

Keywords – Cryptography, stream cipher, PRNG. 

I. INTRODUCTION 

The stream ciphers are an important tool for protecting 
information in digital form and for providing security 
services. The performance quality of the hardware and 
software stream ciphers depends on their crypto resistance, 
velocity and effectiveness. Mostly the crypto resistance of a 
stream cipher is connected with it ability to generate Pseudo 
Random Sequence with enormous period, uniform distribution 
of d-tuples for a large range of d and with good usually lattice 
structure in high dimensions. 

In order to achieve high performance velocity and cost-
effective software implementation, the Pseudo Random 
Number Generator (PRNG) architecture must be simple on the 
one hand and on the other must be combine with some 
nonlinear functions fast and cheap elements, like as Linear 
Feedback Shift Registers (LFSRs) and Feedback with Carry 
Shift Registers (FCSRs). Recently, some theorists [6], [8], 
[10] have used this new approach of stream cipher design and 
have proposed a few new architectures named Shrinking 
Generator [1] and Self−Shrinking Generator [5]. They are 
promising candidates for high-speed encryption applications 
due to their simplicity and provable properties. With regard, 
main goal of our paper is to suggest a novel Self−Shrinking 
Generator, utilizing FCSRs. 

The paper is organized as follows. First, the basic theory of 
the self−shrinking generator is recalled. Second a new PRNG 
architecture, called Self−Shrinking p−adic Generator (SSPG) 
is presented. After then, some properties and statistical 
analysis of the SSPG sequence are given. Finally, the possible 
application areas of the SSPG are discussed. 
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II.  SELF-SHRINKING GENERATOR 

Both the Shrinking Generator and Self-Shrinking Generator 
use the LFSRs and have a simple structure. Despite of this fact 
no successful cryptanalytic attack for both generators has been 
published so far. 

The self-shrinking generator uses only one LFSR whose 
output sequence is shrunken under the control of the LFSR 
itself [5]. The self-shrinking can be applied to any binary 
sequences. In this process the original sequence 

)(  210 …= , , a, aaa  is considered as a sequence of pairs of 
bits. If a pair )( 122 +ii , aa  equals the value )0,1(  or )1,1( , it 
is taken to produce the pseudo random bit 0 or 1, respectively. 
On the other hand, if the pair is equal to )0,0(  or )1,0( , it will 
be discarded, which means that it will not contribute an output 
bit to the new sequence )(  210 …= , , s, sss . 

Below some properties of self-shrunken maximum length 
LFSR-sequence will be recalled. The proofs of given theorems 
can be found in [5]. 

Theorem 1: The period P of a self-shrunken maximum 
length LFSR-sequence produced by an LFSR of length N 
satisfies: 

 ⎣ ⎦22 NP ≥ . (1) 

Theorem 2: The linear complexity L of a self-shrunken 
maximum length LFSR-sequence produced by an LFSR of 
length N satisfies: 

 ⎣ ⎦ 122 −> NL . (2) 

The experimental results, shown by Willi Meier and 
Othmar Stafelbach [5], reveal that the linear complexity does 
not exceed the value 2N−1 − N + 2. 

At the end of this section, it ought to emphasize that the 
simple algebraic structure of the original LFSR-sequence has 
been destroyed during the self-shrinking due to the reasons: 

- randomness of the positions, where the LFSR-sequence is 
shrunken; 

- the LFSR is controlled by itself. 

III. SELF-SHRINKING P-ADIC GENERATOR 

In this section the basic architecture of a new Self-
Shrinking p-adic Generator (SSPG) and some its properties 
will be presented. 
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A. The SSPG Architecture 

The SSPG architecture (Fig. 1.) uses a p-adic FCSR [3] 
instead of a LFSR in contrast with the classic self-shrinking 
generator. This allows the generator to produce a number 
from 0 to p−1 in one step (ai = [0, 1, …, p−1]). The self-
shrinking p-adic generator selects a portion of the output p-
adic FCSR sequence controlling the p-adic FCSR itself by 
means of the following algorithm. 

 
Fig. 1. Self-Shrinking p-adic Generator 

Definition 1: The algorithm of the Self-Shrinking p-adic 
Generator (Fig. 1) consists of the following steps: 

 1. The p-adic FCSR R is clocked with clock sequence 
with period τ0. 

 2. If the p-adic FCSR output number is not equal to 0 
(ai ≠ 0), the output number forms a part of the p-adic SSPG 
sequence. Otherwise, if the output number of the p-adic FCSR 
is equal to 0 (ai = 0), the p-adic output number of SSPG is 
discarded. 
 3. The shrunken p-adic SSPG output sequence is 
transformed in a usual binary sequence presenting every p-
adic number with ⎡log2 (p−1)⎤ binary digits, where ⎡x⎤ is the 
smallest integer that is greater than or equal to real x. After 
that, every binary output number i, ranging from 1 to p−1, is 
replaced with the binary number: 

 
⎡ ⎤

2
)1(21

)1(2log −−
+−

− pi
p

. (3) 

TABLE I 
BINARY PREZENTATION OF P-ADIC SSPG OUTPUT 

 
Binary presentation of p-adic number p-adic 

number p = 3 p = 5 p = 7 p = 11 p = 13 
1 0 00 001 0011 0010 
2 1 01 010 0100 0011 
3 − 10 011 0101 0100 
4 − 11 100 0110 0101 
5 − − 101 0111 0110 
6 − − 110 1000 0111 
7 − − − 1001 1000 
8 − − − 1010 1001 
9 − − − 1011 1010 

10 − − − 1100 1011 
11 − − − − 1100 
12 − − − − 1101 

The binary presentations of p-adic shrunken SSPG output 
numbers are shown with various prime p from 3 to 13 in 
Table I. 

The proposed SSPG uses the generalization of 2-adic 
FCSRs [2], [3], [4] with stage contents and feedback 
coefficients in Z/(p) where p is a prime number, not 
necessarily 2.  

 
Fig. 2. Galois FCSR 

Definition 2: A p-adic feedback with carry shift register 
(FCSR) with Galois architecture of length L (Fig. 2.) consists 
of L stages (or delay elements) numbered 0, 1, …, L-1, each 
capable to store one p-adic (0, 1, …, p-1) number and having 
one input and one output; and a clock which controls the 
movement of data. During each clock cycle the following 
operations are performed: 

1. The content of stage 0 is output and forms part of 
the output sequence; 

2. The sum modulo p after stage i, depicted as “∑” 
on Fig. 2, passes to stage i - 1 for each i, 1 ≤ i ≤ L−1; 

3. The output of the last stage 0 is introduced into 
each of the tapped cells simultaneously, where it is added 
fully (with carry) to the contents of the preceding stages. The 
q1, q2, …, qL are the feedback multipliers and the cells denoted 
with c1, c2, …, cL−1 are the memory (or “carry”) bits. If 

 L
L pqpqpqq ++++−= K2

211  (4) 

is the base p expansion of a positive integer: 

 )(mod1 pq −≡ , (5) 

then q is a connection integer for a FCSR with feedback 
coefficients q1, q2, …, qL in Z/(p). 

With each clock cycle, the integer sums: 

 
jjjj

cqaa += + 0
σ  (6) 

is accumulated. 
At the next clock cycle this sum modulo p 

 )(mod1 pa nj σ=′
−  (7) 

passes on to the next stage in the register, and the new 
memory values are: 

discard ai = 0 

output ai ≠ 0, 
ai ∈ [1, p−1] ai 

clock  
P-FCSR R 
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 )div( pc nj σ=′ . (8) 

The nonlinearity of the proposed SSPG follows from the 
fact that it is unknown at which positions the FCSR-sequence 
is shrunken. As a result the linear algebraic structure of the 
original FCSR-sequence is destroyed. The software SSPG 
implementation is very fast because the pseudorandom 
generator produces ⎡log2 (p−1)⎤ binary digits in every step. 

B. The SSPG properties 

In this subsection the period of SSPG sequences generated 
by maximum length p-adic FCSR will be established and it 
will be proved that the SSPG sequence is balanced. 

Theorem 3: The period of the self-shrunken p-adic 
generator realized by maximum length p-adic FCSR of length 
L and connection integer q is: 

 ⎡ ⎤)1(2log.* −= pTSSPGT , (9) 

where T* is the quantity of output p-adic FCSR nonzero 
numbers. 

Proof: Let a = (a0, a1, a2, …) be the output sequence of 
trivial p−adic FCSR (Fig. 2) of length L and connection 
integer q (Eq. (4)). By definition a is a maximum length 
sequence. Consequently, its period is T, where T is the 
multiplicative order of p modulo q (i.e. T is the smallest 
integer with property )(mod1 qpT ≡ ) [10]. The self-shrunken 
p-adic sequence is periodic also, because every SSPG is a 
digital automat with limited quantity of possible inner states. 
Hence after appearing of all T* nonzero elements of the 
original FCSR sequence, the output shrunken p-adic sequence 
will be repeated again. During the step 3 of SSPG algorithm 
every p-adic element of self-shrunken sequence is transformed 
into exactly ⎡ ⎤)1(log 2 −p  binary digits. Consequently the 

period of self-shrunken SSPG sequence is ⎡ ⎤)1(log. 2
* −pT . 

Theorem 4: The self-shrunken output SSPG sequence 
generated by maximum length p-adic FCSR of length L and 
connection integer q is a balanced sequence. 

Proof: As is it known [2], [3], within the period of a p-adic 
FCSR sequence each of p−adic numbers from 0 to p − 1 
appears with approximately equal probability, i.e. every 
p−adic number, ranging from 1 to p − 1, appears in the self-
shrunken p−adic sequence approximately Np times: 

 ⎥
⎥

⎤
⎢
⎢

⎡
≈

p
TN P . (10) 

The SSPG algorithm utilizes a binary transformation of 
p−adic FCSR output elements during the step 3, which 
provides balanced distribution of binary digits 0 and 1. In 
order to prove this fact two cases will be considered. 

Fist case: If the prime p can be present as 2n + 1, i.e. the 
odd number p − 1 is a power of 2, then the output p−adic 
numbers from 1 to p − 1 will be transformed into all binary 

numbers from 0 to 2n − 1 (may not be in a successive order). It 
is apparent that every permutation of the binary numbers from 
0 to 2n − 1 is balanced, i.e. the number of 0s and 1s is exactly 
equal to n.2n−1. This fact can be illustrated by means of Table I 
where: 

- for p = 3 = 21 + 1 the number of 0s and 1s is equal to 1; 
- for p = 5 = 22 + 1 the number of 0s and 1s is exactly 

4 = 2.21.  
Consequently, if the prime p can be present in the form 

p = 2n + 1, the numbers of 0s and 1s in the self-shrunken 
output SSPG sequence are balanced and equal to: 

 nTNN n
nSS .2

12
1

10
−

⎥
⎥

⎤
⎢
⎢

⎡

+
≈≈ . (11) 

Second case: If the odd number p − 1 is smaller than 
2 ⎡log2 (p−1)⎤: 

 p − 1 < 2 ⎡log2 (p−1)⎤, (12) 

then the smallest and the biggest 
⎡ ⎤

2
)1(2 )1(2log −−− pp

 binary 

numbers in the range 0÷2 ⎡log2 (p−1)⎤ -1 of all possible binary 
numbers are rejected during the step 3. Hence the quantity of 

1s and 0s is balanced also and equal to ⎡ ⎤
2

)1.()1(log2 −− pp
. 

This fact can be illustrated by means of Table I where: 
- for p = 7 = 23 − 1 the number of 0s and 1s is equal to 9 = 

3.3 = 3.(7 − 1)/2; 
- for p = 11 = 24 − 5 the number of 0s and 1s is equal to 

20 = 4.5 = 4.(11 − 1)/2; 
- for p = 13 the number of 1s and 0s is 24 = 4.6. 

Consequently, if the prime p satisfies the inequality: 

 p < 2 ⎡log2 (p−1)⎤ + 1 (13) 

the numbers of 0s and 1s in the self-shrunken output SSPG 
sequence are balanced and equal to: 

 ⎡ ⎤ )1()1(log
122

1
210 −−⎥

⎥

⎤
⎢
⎢

⎡

+
≈≈ ppTNN

nSS . (14) 

The transformation in step 3 (see Eq. (3)) eliminates the 
possibility of appearance the sequences of 2 ⎡log2 (p−1)⎤ 
consecutive 1s and 2 ⎡log2 (p−1)⎤ consecutive 0s also. 

IV. STATISTICAL EXPERIMENTAL RESULTS 

The randomness of binary sequences generated by SSPG 
was investigated by so-named “NIST suite”, proposed by 
National Institute of Standards and Technology (USA). The 
NIST suite [7] includes sixteen tests. The tests examines on a 
variety of different types of non-randomness that could exist 
in a sequence. These tests are: frequency (monobit), frequency 
within a block, runs, longest-run-of-ones in a block, binary 
matrix rank, discrete Fourier transform (spectral), non-
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overlapping template matching (consists of 148 subtests), 
overlapping template matching, Maurer’s “Universal 
statistical”, Lempel-Ziv compression, linear complexity, serial 
(consists of 2 subtests), approximate entropy, cumulative 
sums (consists of 2 subtests), random excursions (consists of 8 
subtests), random excursions variant (consists of 18 subtests). 

The testing process consists of the following steps [7], [9]: 
 1.  State the null hypothesis. Assume that the binary 

sequence is random. 
 2.  Compute a sequence test statistic. Testing is 

carried out at the bit level. 
 3.  Compute the p−value, ]1,0[value∈−p . 

 4.  Compare the p−value to error probability α. Fix 
α, where ]01.0,0001.0(∈α . Success is declared whenever 

α≥− valuep ; otherwise, failure is declared. 

The 1 000 sequences of length 1 000 000 bits, generated by 
SSPG with p = 5, are tested. The seed of SSPG are changed in 
every 1 000 bits by modifying the connection taps, initial state 
and initial memory state of a 5−adic FCSR. The results from 
all NIST statistical tests are given in Table II.  

 
TABLE II 

THE RESULTS FROM 5−ADIC SSPG STATISTICAL TESTS 
 

Statistical Tests Results 
Frequency (monobit) Pass 
Frequency within a block Pass 

Pass Cumulative sums 
 Pass 
Runs Pass 
Longest-run-of-ones in a block Pass 
Binary matrix rank Pass 
Discrete Fourier transform (spectral) Pass 
Non-overlapping template matching Pass 
Overlapping template matching 142 Subtests Pass

6 Subtests Failure 
Maurer’s “Universal statistical” Pass 
Approximate entropy Pass 
Random excursions All 8 Subtests 

Pass 
Random excursions variant All 18 Subtests 

Pass 
Pass Serial 

 Pass 
Lempel-Ziv compression Pass 
Linear complexity Pass 
 
As one can see from Table II, most of the NIST statistical 

tests are passed. Only 6 subtests of non-overlapping template 
test are failed. It was observed that the distributions of 
p−values of sequences, passed the statistical tests, aren’t 

distributed uniformly, i.e. the numbers of p−values that lie 
within each unity sub-interval aren’t equal.  

V. CONCLUSION 

In this paper the architecture of new self-shrinking p−adic 
generator is suggested. A few important properties of SSPG 
sequences generated by maximum length p-adic FCSR are 
established. The results from statistical analysis show that the 
sequence generated by SSPG is uniform, scalable, 
uncompressible, unpredictable and has large period. This 
gives the reason to consider the SSPG as a fast software 
pseudorandom generator and it can be useful as a part of 
modern stream ciphers. 

ACKNOWLEDGEMENT 

We will be glad to thanks everyone who helps us to make 
some strong cryptanalysis of self-shrinking p−adic generator. 

REFERENCES 

[1] D. Coppersmith, H. Krawczyk, Y. Mansour, “The Shrinking 
Generator”, Proceedings of Crypto 93, Springer-Verlag, pp. 22-
39, 1994. 

[2] A. Klapper, M. Goresky, “2-adic Shift Register. Fast Software 
Encryption”, Second International Workshop, (Lecture Notes in 
Computer Science, vol. 950, Springer Verlag, N. Y.,) 
pp. 174−178, 1994. 

[3] A. Klapper, M. Goresky, “Feedback Shift Registers, 2-adic 
Span, and Combiners With Memory.”, Journal of Cryptology, 
Volume 10, Number 2, 1997, pp. 111-147, 
http://www.math.ias.edu/~goresky/pdf/2adic.jour.pdf 

[4] A. Klapper, J. Xu, “Algebraic Feedback Shift Registers” 
Elsevier Preprint, 2003. 

[5] W. Meier, O. Staffelbach, “The Self-Shrinking Generator” 
Proceedings of Advances in Cryptology, EuroCrypt ’94, 
Springer-Verlag, pp. 205-214, 1998. 

[6] P. van Oorshot, A. Menezes, S. Vanstone, “Handbook of 
Applied Cryptography”, CRC Press, 1997. 

[7] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, 
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, 
“A Statistical Test Suite for Random and Pseudo-Random 
Number Generators for Cryptographic Application”, NIST 
Special Publication 800-22 (with revision May 15, 2001) 
http://csrc.nist.gov/rng/. 

[8] B. Schneier, “Applied Cryptography”, John Wiley & Sons, 
New York, 1996. 

[9] J. Soto, “Statistical Testing of Random Number Generators”, 
NIST Special Publication, http://csrc.nist.gov/rng/. 

[10] Zh. N. Tasheva, B. Y. Bedzhev, V. A. Mutkov, “An Shrinking 
Data Encryption Algorithm with p-adic Feedback with Carry 
Shift Register”, Conference Proceedings of XII International 
Symposium of Theoretical Electrical Engineering ISTET 03, 
Warsaw, Poland, 6-9 July, 2003., vol. II, pp. 397−400. 

 


