

7

Self-Shrinking p-adic Cryptographic Generator
Zhaneta N. Tasheva 1, Borislav Y. Bedzhev 2, Borislav P. Stoyanov 3

Abstract – A new cryptographic pseudo random number

generator (PRNG), called Self–Shrinking p−adic Generator
(SSPG), is proposed in this paper. The SSPG sequence is
evaluated and its balancing is proved. The results of statistical
analysis of SSPG sequence are given. They show that the
sequence generated by a SSPG is uniform, scalable,
uncompressible, consistent, unpredictable and has large period.
This gives the reason to consider the SSPG as suitable for a
particular software cryptographic application in stream ciphers.

Keywords – Cryptography, stream cipher, PRNG.

I. INTRODUCTION

The stream ciphers are an important tool for protecting
information in digital form and for providing security
services. The performance quality of the hardware and
software stream ciphers depends on their crypto resistance,
velocity and effectiveness. Mostly the crypto resistance of a
stream cipher is connected with it ability to generate Pseudo
Random Sequence with enormous period, uniform distribution
of d-tuples for a large range of d and with good usually lattice
structure in high dimensions.

In order to achieve high performance velocity and cost-
effective software implementation, the Pseudo Random
Number Generator (PRNG) architecture must be simple on the
one hand and on the other must be combine with some
nonlinear functions fast and cheap elements, like as Linear
Feedback Shift Registers (LFSRs) and Feedback with Carry
Shift Registers (FCSRs). Recently, some theorists [6], [8],
[10] have used this new approach of stream cipher design and
have proposed a few new architectures named Shrinking
Generator [1] and Self−Shrinking Generator [5]. They are
promising candidates for high-speed encryption applications
due to their simplicity and provable properties. With regard,
main goal of our paper is to suggest a novel Self−Shrinking
Generator, utilizing FCSRs.

The paper is organized as follows. First, the basic theory of
the self−shrinking generator is recalled. Second a new PRNG
architecture, called Self−Shrinking p−adic Generator (SSPG)
is presented. After then, some properties and statistical
analysis of the SSPG sequence are given. Finally, the possible
application areas of the SSPG are discussed.

1Zhaneta N. Tasheva is an Assistant Prof. Eng. PhD. in the Faculty
of Artillery and Air Defence, National Military University, Shoumen,
1st Karel Shkorpil Str., Shoumen 9710, Bulgaria, E-mail:
tashevi86@yahoo.com

2Borislav Y. Bedzhev is an Assoc. Prof. Eng. DSc. in the Faculty
of Artillery and Air Defence, National Military University, Shoumen,
1st Karel Shkorpil Str., Shoumen 9710, Bulgaria, E-mail:
bedzhev@mail.pv-ma.bg

3Borislav P. Stoyanov is an Assistant Prof. Mag. PhD. Student in
the Shoumen University, Faculty of Computer Informatics,
Shoumen, Bulgaria, E-mail: bpstoyanov@abv.bg

II. SELF-SHRINKING GENERATOR

Both the Shrinking Generator and Self-Shrinking Generator
use the LFSRs and have a simple structure. Despite of this fact
no successful cryptanalytic attack for both generators has been
published so far.

The self-shrinking generator uses only one LFSR whose
output sequence is shrunken under the control of the LFSR
itself [5]. The self-shrinking can be applied to any binary
sequences. In this process the original sequence

)(210 …= , , a, aaa is considered as a sequence of pairs of
bits. If a pair)(122 +ii , aa equals the value)0,1(or)1,1(, it
is taken to produce the pseudo random bit 0 or 1, respectively.
On the other hand, if the pair is equal to)0,0(or)1,0(, it will
be discarded, which means that it will not contribute an output
bit to the new sequence)(210 …= , , s, sss .

Below some properties of self-shrunken maximum length
LFSR-sequence will be recalled. The proofs of given theorems
can be found in [5].

Theorem 1: The period P of a self-shrunken maximum
length LFSR-sequence produced by an LFSR of length N
satisfies:

 ⎣ ⎦22 NP ≥ . (1)

Theorem 2: The linear complexity L of a self-shrunken
maximum length LFSR-sequence produced by an LFSR of
length N satisfies:

 ⎣ ⎦ 122 −> NL . (2)

The experimental results, shown by Willi Meier and
Othmar Stafelbach [5], reveal that the linear complexity does
not exceed the value 2N−1 − N + 2.

At the end of this section, it ought to emphasize that the
simple algebraic structure of the original LFSR-sequence has
been destroyed during the self-shrinking due to the reasons:

- randomness of the positions, where the LFSR-sequence is
shrunken;

- the LFSR is controlled by itself.

III. SELF-SHRINKING P-ADIC GENERATOR

In this section the basic architecture of a new Self-
Shrinking p-adic Generator (SSPG) and some its properties
will be presented.

 8

A. The SSPG Architecture

The SSPG architecture (Fig. 1.) uses a p-adic FCSR [3]
instead of a LFSR in contrast with the classic self-shrinking
generator. This allows the generator to produce a number
from 0 to p−1 in one step (ai = [0, 1, …, p−1]). The self-
shrinking p-adic generator selects a portion of the output p-
adic FCSR sequence controlling the p-adic FCSR itself by
means of the following algorithm.

Fig. 1. Self-Shrinking p-adic Generator

Definition 1: The algorithm of the Self-Shrinking p-adic
Generator (Fig. 1) consists of the following steps:

 1. The p-adic FCSR R is clocked with clock sequence
with period τ0.

 2. If the p-adic FCSR output number is not equal to 0
(ai ≠ 0), the output number forms a part of the p-adic SSPG
sequence. Otherwise, if the output number of the p-adic FCSR
is equal to 0 (ai = 0), the p-adic output number of SSPG is
discarded.
 3. The shrunken p-adic SSPG output sequence is
transformed in a usual binary sequence presenting every p-
adic number with ⎡log2 (p−1)⎤ binary digits, where ⎡x⎤ is the
smallest integer that is greater than or equal to real x. After
that, every binary output number i, ranging from 1 to p−1, is
replaced with the binary number:

⎡ ⎤

2
)1(21

)1(2log −−
+−

− pi
p

. (3)

TABLE I
BINARY PREZENTATION OF P-ADIC SSPG OUTPUT

Binary presentation of p-adic number p-adic

number p = 3 p = 5 p = 7 p = 11 p = 13
1 0 00 001 0011 0010
2 1 01 010 0100 0011
3 − 10 011 0101 0100
4 − 11 100 0110 0101
5 − − 101 0111 0110
6 − − 110 1000 0111
7 − − − 1001 1000
8 − − − 1010 1001
9 − − − 1011 1010

10 − − − 1100 1011
11 − − − − 1100
12 − − − − 1101

The binary presentations of p-adic shrunken SSPG output
numbers are shown with various prime p from 3 to 13 in
Table I.

The proposed SSPG uses the generalization of 2-adic
FCSRs [2], [3], [4] with stage contents and feedback
coefficients in Z/(p) where p is a prime number, not
necessarily 2.

Fig. 2. Galois FCSR

Definition 2: A p-adic feedback with carry shift register
(FCSR) with Galois architecture of length L (Fig. 2.) consists
of L stages (or delay elements) numbered 0, 1, …, L-1, each
capable to store one p-adic (0, 1, …, p-1) number and having
one input and one output; and a clock which controls the
movement of data. During each clock cycle the following
operations are performed:

1. The content of stage 0 is output and forms part of
the output sequence;

2. The sum modulo p after stage i, depicted as “∑”
on Fig. 2, passes to stage i - 1 for each i, 1 ≤ i ≤ L−1;

3. The output of the last stage 0 is introduced into
each of the tapped cells simultaneously, where it is added
fully (with carry) to the contents of the preceding stages. The
q1, q2, …, qL are the feedback multipliers and the cells denoted
with c1, c2, …, cL−1 are the memory (or “carry”) bits. If

 L
L pqpqpqq ++++−= K2

211 (4)

is the base p expansion of a positive integer:

)(mod1 pq −≡ , (5)

then q is a connection integer for a FCSR with feedback
coefficients q1, q2, …, qL in Z/(p).

With each clock cycle, the integer sums:

jjjj

cqaa += + 0
σ (6)

is accumulated.
At the next clock cycle this sum modulo p

)(mod1 pa nj σ=′
− (7)

passes on to the next stage in the register, and the new
memory values are:

discard ai = 0

output ai ≠ 0,
ai ∈ [1, p−1] ai

clock
P-FCSR R

Memory
for 2-adic

transformation
(p−1)x⎡log2(p−1)⎤

bits

binary
output

aL-

qL-1

 …

q2

 a1

q1

 a0

qL …

c1

Σ

c2

Σ

cL-1

Σ

 9

)div(pc nj σ=′ . (8)

The nonlinearity of the proposed SSPG follows from the
fact that it is unknown at which positions the FCSR-sequence
is shrunken. As a result the linear algebraic structure of the
original FCSR-sequence is destroyed. The software SSPG
implementation is very fast because the pseudorandom
generator produces ⎡log2 (p−1)⎤ binary digits in every step.

B. The SSPG properties

In this subsection the period of SSPG sequences generated
by maximum length p-adic FCSR will be established and it
will be proved that the SSPG sequence is balanced.

Theorem 3: The period of the self-shrunken p-adic
generator realized by maximum length p-adic FCSR of length
L and connection integer q is:

 ⎡ ⎤)1(2log.* −= pTSSPGT , (9)

where T* is the quantity of output p-adic FCSR nonzero
numbers.

Proof: Let a = (a0, a1, a2, …) be the output sequence of
trivial p−adic FCSR (Fig. 2) of length L and connection
integer q (Eq. (4)). By definition a is a maximum length
sequence. Consequently, its period is T, where T is the
multiplicative order of p modulo q (i.e. T is the smallest
integer with property)(mod1 qpT ≡) [10]. The self-shrunken
p-adic sequence is periodic also, because every SSPG is a
digital automat with limited quantity of possible inner states.
Hence after appearing of all T* nonzero elements of the
original FCSR sequence, the output shrunken p-adic sequence
will be repeated again. During the step 3 of SSPG algorithm
every p-adic element of self-shrunken sequence is transformed
into exactly ⎡ ⎤)1(log 2 −p binary digits. Consequently the

period of self-shrunken SSPG sequence is ⎡ ⎤)1(log. 2
* −pT .

Theorem 4: The self-shrunken output SSPG sequence
generated by maximum length p-adic FCSR of length L and
connection integer q is a balanced sequence.

Proof: As is it known [2], [3], within the period of a p-adic
FCSR sequence each of p−adic numbers from 0 to p − 1
appears with approximately equal probability, i.e. every
p−adic number, ranging from 1 to p − 1, appears in the self-
shrunken p−adic sequence approximately Np times:

 ⎥
⎥

⎤
⎢
⎢

⎡
≈

p
TN P . (10)

The SSPG algorithm utilizes a binary transformation of
p−adic FCSR output elements during the step 3, which
provides balanced distribution of binary digits 0 and 1. In
order to prove this fact two cases will be considered.

Fist case: If the prime p can be present as 2n + 1, i.e. the
odd number p − 1 is a power of 2, then the output p−adic
numbers from 1 to p − 1 will be transformed into all binary

numbers from 0 to 2n − 1 (may not be in a successive order). It
is apparent that every permutation of the binary numbers from
0 to 2n − 1 is balanced, i.e. the number of 0s and 1s is exactly
equal to n.2n−1. This fact can be illustrated by means of Table I
where:

- for p = 3 = 21 + 1 the number of 0s and 1s is equal to 1;
- for p = 5 = 22 + 1 the number of 0s and 1s is exactly

4 = 2.21.
Consequently, if the prime p can be present in the form

p = 2n + 1, the numbers of 0s and 1s in the self-shrunken
output SSPG sequence are balanced and equal to:

 nTNN n
nSS .2

12
1

10
−

⎥
⎥

⎤
⎢
⎢

⎡

+
≈≈ . (11)

Second case: If the odd number p − 1 is smaller than
2 ⎡log2 (p−1)⎤:

 p − 1 < 2 ⎡log2 (p−1)⎤, (12)

then the smallest and the biggest
⎡ ⎤

2
)1(2)1(2log −−− pp

 binary

numbers in the range 0÷2 ⎡log2 (p−1)⎤ -1 of all possible binary
numbers are rejected during the step 3. Hence the quantity of

1s and 0s is balanced also and equal to ⎡ ⎤
2

)1.()1(log2 −− pp
.

This fact can be illustrated by means of Table I where:
- for p = 7 = 23 − 1 the number of 0s and 1s is equal to 9 =

3.3 = 3.(7 − 1)/2;
- for p = 11 = 24 − 5 the number of 0s and 1s is equal to

20 = 4.5 = 4.(11 − 1)/2;
- for p = 13 the number of 1s and 0s is 24 = 4.6.

Consequently, if the prime p satisfies the inequality:

 p < 2 ⎡log2 (p−1)⎤ + 1 (13)

the numbers of 0s and 1s in the self-shrunken output SSPG
sequence are balanced and equal to:

 ⎡ ⎤)1()1(log
122

1
210 −−⎥

⎥

⎤
⎢
⎢

⎡

+
≈≈ ppTNN

nSS . (14)

The transformation in step 3 (see Eq. (3)) eliminates the
possibility of appearance the sequences of 2 ⎡log2 (p−1)⎤
consecutive 1s and 2 ⎡log2 (p−1)⎤ consecutive 0s also.

IV. STATISTICAL EXPERIMENTAL RESULTS

The randomness of binary sequences generated by SSPG
was investigated by so-named “NIST suite”, proposed by
National Institute of Standards and Technology (USA). The
NIST suite [7] includes sixteen tests. The tests examines on a
variety of different types of non-randomness that could exist
in a sequence. These tests are: frequency (monobit), frequency
within a block, runs, longest-run-of-ones in a block, binary
matrix rank, discrete Fourier transform (spectral), non-

 10

overlapping template matching (consists of 148 subtests),
overlapping template matching, Maurer’s “Universal
statistical”, Lempel-Ziv compression, linear complexity, serial
(consists of 2 subtests), approximate entropy, cumulative
sums (consists of 2 subtests), random excursions (consists of 8
subtests), random excursions variant (consists of 18 subtests).

The testing process consists of the following steps [7], [9]:
 1. State the null hypothesis. Assume that the binary

sequence is random.
 2. Compute a sequence test statistic. Testing is

carried out at the bit level.
 3. Compute the p−value,]1,0[value∈−p .

 4. Compare the p−value to error probability α. Fix
α, where]01.0,0001.0(∈α . Success is declared whenever

α≥− valuep ; otherwise, failure is declared.

The 1 000 sequences of length 1 000 000 bits, generated by
SSPG with p = 5, are tested. The seed of SSPG are changed in
every 1 000 bits by modifying the connection taps, initial state
and initial memory state of a 5−adic FCSR. The results from
all NIST statistical tests are given in Table II.

TABLE II

THE RESULTS FROM 5−ADIC SSPG STATISTICAL TESTS

Statistical Tests Results
Frequency (monobit) Pass
Frequency within a block Pass

Pass Cumulative sums
 Pass
Runs Pass
Longest-run-of-ones in a block Pass
Binary matrix rank Pass
Discrete Fourier transform (spectral) Pass
Non-overlapping template matching Pass
Overlapping template matching 142 Subtests Pass

6 Subtests Failure
Maurer’s “Universal statistical” Pass
Approximate entropy Pass
Random excursions All 8 Subtests

Pass
Random excursions variant All 18 Subtests

Pass
Pass Serial

 Pass
Lempel-Ziv compression Pass
Linear complexity Pass

As one can see from Table II, most of the NIST statistical

tests are passed. Only 6 subtests of non-overlapping template
test are failed. It was observed that the distributions of
p−values of sequences, passed the statistical tests, aren’t

distributed uniformly, i.e. the numbers of p−values that lie
within each unity sub-interval aren’t equal.

V. CONCLUSION

In this paper the architecture of new self-shrinking p−adic
generator is suggested. A few important properties of SSPG
sequences generated by maximum length p-adic FCSR are
established. The results from statistical analysis show that the
sequence generated by SSPG is uniform, scalable,
uncompressible, unpredictable and has large period. This
gives the reason to consider the SSPG as a fast software
pseudorandom generator and it can be useful as a part of
modern stream ciphers.

ACKNOWLEDGEMENT

We will be glad to thanks everyone who helps us to make
some strong cryptanalysis of self-shrinking p−adic generator.

REFERENCES

[1] D. Coppersmith, H. Krawczyk, Y. Mansour, “The Shrinking
Generator”, Proceedings of Crypto 93, Springer-Verlag, pp. 22-
39, 1994.

[2] A. Klapper, M. Goresky, “2-adic Shift Register. Fast Software
Encryption”, Second International Workshop, (Lecture Notes in
Computer Science, vol. 950, Springer Verlag, N. Y.,)
pp. 174−178, 1994.

[3] A. Klapper, M. Goresky, “Feedback Shift Registers, 2-adic
Span, and Combiners With Memory.”, Journal of Cryptology,
Volume 10, Number 2, 1997, pp. 111-147,
http://www.math.ias.edu/~goresky/pdf/2adic.jour.pdf

[4] A. Klapper, J. Xu, “Algebraic Feedback Shift Registers”
Elsevier Preprint, 2003.

[5] W. Meier, O. Staffelbach, “The Self-Shrinking Generator”
Proceedings of Advances in Cryptology, EuroCrypt ’94,
Springer-Verlag, pp. 205-214, 1998.

[6] P. van Oorshot, A. Menezes, S. Vanstone, “Handbook of
Applied Cryptography”, CRC Press, 1997.

[7] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo,
“A Statistical Test Suite for Random and Pseudo-Random
Number Generators for Cryptographic Application”, NIST
Special Publication 800-22 (with revision May 15, 2001)
http://csrc.nist.gov/rng/.

[8] B. Schneier, “Applied Cryptography”, John Wiley & Sons,
New York, 1996.

[9] J. Soto, “Statistical Testing of Random Number Generators”,
NIST Special Publication, http://csrc.nist.gov/rng/.

[10] Zh. N. Tasheva, B. Y. Bedzhev, V. A. Mutkov, “An Shrinking
Data Encryption Algorithm with p-adic Feedback with Carry
Shift Register”, Conference Proceedings of XII International
Symposium of Theoretical Electrical Engineering ISTET 03,
Warsaw, Poland, 6-9 July, 2003., vol. II, pp. 397−400.

