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Bennett’s Integral for Uniform Polar Quantization 
Zoran H. Peric1, Jelena R. Nikolić2, Danijela R. Aleksić3 

 
Abstract - In this paper the analysis of  Bennett's integral is 

given for uniform polar quantization for two-dimensional 
memoryless Gaussian sources with respect to granular distortion 
Dg , i.e. the mean-square error (MSE). The goal of this paper is 
finding simple equation for distortion solving Bennett's integral 
for uniform polar quantization and circular symmetric sources 
(iid Gaussian source).  

Keywords – Bennett’s integral, uniform polar quantization, 
normalized moment of inertia 

I. INTRODUCTION 

The most important results in polar quantization was given 
by Swaszek and Ku who derived the asymptotically 
Unrestricted Polar Quantization (UPQ) [1]. Using asymptotic 
uniform polar analysis for calculating optimal numbers of 
magnitude levels and the numbers of reconstruction points for 
two-dimensional quantizers is done in [1, 2]. In [3] was given 
the analysis of vector quantization in order to determine the 
optimal maximal amplitude. In papers [4] and [5] were given 
analyses for asymptotic uniform polar quantization and 
asymptotic nonuniform polar quantization, respectively. 
Optimisatons was done with respect to granular distortion Dg , 
i.e. the mean-square error (MSE). In this paper Bennett's 
integral has been considered and succesful attempt has been 
made in order to extend it to the polar quantizer. Considerable 
attention has been focused on finding simple approximate 
formula for distortion that shows influence of key 
characteristics.  

II. UNIFORM POLAR QUANTIZATION 

For this analysis we use uniform polar quantizer with L 
madnitude levels and Mi phase reconstruction levels at the 
magnitude reconstruction levels mi , 1≤i≤L. First we portion 
the magnitude range [0, rL+1] into magnitude rings with L+1 
decision levels r=(r1,…,rL+1) ordered in turn such that 
0=r1<r2<...<rL<rL+1=rmax. The magnitude reconstruction 
levels m=(m1,…,mL) obviously satisfy succession 
0<m1<m2<...<mL. Let we assume that the total number of  
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reconstruction points N is large enough. In that case 
magnitude decision levels and reconstruction levels are given 
in turn:    
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Let we consider distortion D as a function of the vector 
P=(Pi)1≤i≤L  whose elements are values of phase quantization 
levels at the each magnitude levels. Said in other words, each 
concentric ring in quantization pattern is allowed to have a 
different number of partitions in the phase quantizer (Pi) for r 
in the i-th magnitude ring. Assuming that the representation 
points are centered in their respective cells, magnitude 
decision levels and reconstruction levels can be given as in 
Eqs. (1) and (2). Let we make a partition of each magnitude 
ring into Mi phase subpartitions. By denoting adjacent phase 
decision levels with φi,j and φi,j+1, and the j-th phase 
reconstruction levels as ψi,j for the i-th magnitude ring, 
1≤j≤Mi , following dependence is valid: 
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Total distortion D may be written as the sum of granular and 
overload distortions, D=Dg+Do. The granular distortion Dg  
can be given by: 
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For this analysis we assume that the input is from a 
continuously valued circularly source with unit variance 
rectangular coordinate marginals and bivariate density 
function: 
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Transforming to polar coordinates, the phase is uniformly 
distributed on [0,2π) and the magnitude is distributed on [0,∞) 
with density function f(r)=2πrp(r). The magnitude and phase 
are independent random variables. The transformed 
probability density function for the Gaussian source is: 

                 
( )
ππσ

φ σ

22
1),( 2

2

2
2

rfrerf
r

==
−

                (6) 



 12

without lossing generality we assume that variance is σ2=1. 
Suppose that a polar quantizer has many cells which are small 
and the source density is smooth. In that case granular 
distortion Dg of one cell is given by: 
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The total granular distortion for polar quantization was found 
in [4]: 
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III. BENNETT’S INTEGRAL 

A two-dimensional N-point scalar quantizer is characterized 
by a partition S={S1,S2,..., SN} of two-dimensional Euclidean 
space R2  into N quantization cells and code book, noticed as 
C={y1,y2,...,yN} is consisting of N quantization points in two-
dimensional Euclidean space R2. A two-dimensional source 
vector  x={x1,x2}  is quantized into one of the yi's according to 
the quantization rule Q(x)=yi if x∈Si. Encoding rate for two-
dimensional quantizer, is log2N/2. When applied to a random 
vector  x={x1,x2}  with probability density p(x), quantizer's 
distorsion can be given by: 
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where ║x-yi║ denotes Euclidean distance such that: 
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and p(x) is the two-dimensional density of  x. 
Bennett showed that the mean-squared error of a scalar 

quantizer (k = 1), with meny small cells (N large) and with 
each yi in the center of its cell may be accurately 
approximated as: 
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where, λ(x) is a function, called point density, and λ(x)∆ is the 
fraction of quantization points in a small interval of width ∆ 
surrounding x. The integral without limits denotes an integral 
over the entire space. The right-hand side of previous equation 
is known as Bennett's integral. Althought originally derived 
for companders (quantizers consisting of a compressor, 
uniform quantizer, and expander) with λ equal to the 
derivative of the compressor function can be recognized by 
other quantizers, and is applied more generally. Bennett's 
integral shows how the distortion depends on the key 
characteristics of the quantizer, namely, the number of points 
N and a point density λ. Its utility is exemplified by the fact 
that one may use it to show that the best quantizers have:  
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In following analysis we extend Bennett's integral to polar 
quantizer. We suppose that distortion for polar quantization 
may be approximated as:  
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where vol(Si, j ) denotes the volume of the cell Si  and NM(i)  
denotes the normalized moment of inertia of the cell  Si  about 
the point  yi  with respect to the distorsion and can be 
expressed in turn: 
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The width of rings, noticed with ∆r, in case of resticted 
uniform polar quantization is ∆r =rmax/L. Finally point density 
is found as: 
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After this approximation, D  becomes: 
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By using the method of Lagrange multipliers with restriction 
for the total number of the reconstruction points N  we 
obtained optimal point density p(r) as: 
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Let distortion can be determinated as: ( ) 21, IICSD +=  
where are: 
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Finally we find distortion as a solution of Bennett's integral 
for uniform polar quantizer as: 
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The optimal number of levels is: 
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and we find distortion as: 

The width of rings, noticed with ∆r, in case of resticted 
uniform polar quantization is ∆r =rmax/L. Finally point density 
is found as: 
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By using the method of Lagrange multipliers with restriction 
for the total number of the reconstruction points N  we 
obtained optimal point density p(r) as: 
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Let distortion can be determinated as: ( ) 21, IICSD +=  
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Finally we find distortion as a solution of Bennett's integral 
for uniform polar quantizer as: 
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The optimal number of levels is: 
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and we find distortion as: 
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Optimal point density is p(r)=2Nr/(rmaxL) in case of  
λ(r,φ)=const, and optimal number of magnitude levels is 
L=

π
N . Hence, distortion can be found as:  
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Table I gives parallel comparison of distortions dim
gconstD  

and dim
gD  when number of quantization cells are N=256, 

N=4096 and N=65536. 
TABLE I 

COMPARED RESULTS FOR dim
gconstD  AND dim

gD  FOR A DIFFERENT BIT 

RATES (R) AND NUMBER OF RECONSTRUCTION POINTS (N) 
 

R N dim
gconstD  dim

gD  

4 256 0.0106 0.00637 
6 4096 0.00106 0.00026 
8 65536 0.000093 0.00000856 

IV. CONCLUSION 

The analysis of Bennett's integral is given for uniform polar 
quantization for two-dimensional memoryless Gaussian 
sources. This paper gives simple and complete analysis for 
constructing an optimal uniform polar quantizer for sources 
with optimal point density. We have calculated granular 
distortion and have found gain obtained by using optimal 
point density. The goal of tis paper is solving quantization 
problems for uniform polar quantizers by finding minimal 
distortion and optimal point density. 
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