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Improved Design Centering In a Reduced Search Space 
for Electronic Circuits Optimization 
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Abstract - The paper presents an improved version of DCSDR 
method for efficient design centering for electronic circuits. The 
choice of simplex vertex for current reflection is more precise. A 
new step is added for the case when the last iteration was 
unsuccessful but there are element values, which are not 
reflected towards the corresponding best value in the simplex, i. 
e. there are available unexplored search directions. Thus designs 
which initial values are close to the optimal can also be treated. 
An extended investigation on different circuits is performed.+ 

Keywords - Statistical design methodology, Design centering, 
Discrete optimization 

I.  INTRODUCTION 

The design centering objective is to find out the optimal 
values for the parameters of circuit elements in order to obtain 
maximal yield. The optimal tolerancing goal is to obtain the 
optimal tolerance values for the parameters of the circuit 
elements in order to avoid fail by reducing tolerances where 
necessary and in order to reduce cost by increasing tolerances 
where it is possible. Statistical design methodology is based 
on nominal design and includes design centering and optimal 
tolerancing. Theory for design centering and optimal 
tolerancing can be found in [7]. Implementations of design 
centering are presented in  [2, 4]. In design centering a Monte 
Carlo analysis is performed (by means of IESD statistical 
simulator [3]) to estimate the yield during the optimization 
procedure.  

The design centering problem can be defined as: 

  Min       F  =  ∑
=

m

i
i

1
δ             (1) 

subject to:       ⎧ 1 if  J(x) ∉ [Lb, Ub];   
      δi  =  ⎨             (2) 

           ⎩ 0 if  J(x) ∈ [Lb, Ub];   
     lj ≤ xj ≤ uj;    j = 1,…,n;           (3) 

     x ∈ Zn
+ ,            (4) 

where J(x) is the output signal of the circuit under 
consideration, Lb and Ub are the bounds (lower and upper) of 
J(x), xj, j = 1,…,n; are the parameters of the elements, which 
values have to be optimized, and which accept discrete values 
only. Z

n
+  is the set of nonnegative integral n-dimensional 
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vectors, lj and uj are bounds of xj, such that (uj–lj)/(2uj).100 = 
tolj determines the tolerance of xj. Here m is a positive integer 
number equal to the number performed Monte Carlo 
simulations by means of statistical simulator IESD (see [3]) 
on the circuit under consideration. The optimal solution of (1-
4) is F=0.  

The optimal tolerancing problem can be defined as: 

Max  FT = ( Min
,...,1 nj=

tolj )          (5) 

subject to:         ∑
=

m

i
i

1
δ = 0          (6) 

 ⎧ 1 if  J(x) ∉ [Lb, Ub];  
      δi  =  ⎨             (7) 

 ⎩ 0 if  J(x) ∈ [Lb, Ub];  
             uj =  xj + xj . tolj / 100                         (8) 
                    lj  =  xj – xj . tolj / 100            (9) 
                   lj ≤ xj ≤ uj;    j = 1,…,n;                        (10) 
                     tolj ∈ T;  T = {1, 2, 5, 10, 15}         (11) 

            x ∈ Zn,                         (12) 
where the variables tolj are the tolerances of parameters xj, 
j=1,…,n; and xj, j=1,…,n; Lb, Ub, are beforehand known 
constant integers. 

II.  THE DESIGN CENTERING METHOD IN A 
REDUCED SEARCH SPACE DCSDR 

The problem (1)-(4) is a combinatorial one (see constraints 
(4)) and belongs to the class of NP-hard optimization 
problems. For this reason the statistical optimization methods 
solving this problem could be very time consuming. Usually 
the complete enumeration of the permitted range options is 
large. A heuristic has been proposed in order to limit the trials 
number (see [2]). At each step best and worst performance 
randomly generated circuits are used to define the values and 
the tolerances at the next step. This approach is effective, but 
also could be rather inefficient when the number of circuit 
elements n is large and great number of parameter variations 
must be investigated. To improve the efficiency a direct 
search method for fast design centering (FDC) was proposed 
in [4]. It is based on the Nelder and Mead’s method [6], 
known as the most efficient among the direct search methods. 
FDC method is modified correspondingly for the discrete 
search space. The drawback of FDC method is that the 
number of simplex vertices is (n+1), that is greater than the 
number of circuit elements n, and for large n great number of 
Monte Carlo simulations should be performed.  
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Performing design centering it turns out that very often the 
circuit output J(x) depends stronger on the variation of some 
"sensitive" circuit elements than on the variation of the left 
over elements. This feature of the problem (1)-(4) makes it 
possible to use reduced search space, optimizing only the 
"sensitive" elements. Based on this idea a design centering 
method with space dimension reduction (DCSDR) solving the 
problem (1)-(4) was proposed in [5]. In this way the search 
process is enhanced considerably. The search step in DCSDR 
method is calculated like that one in FDC method. To keep 
the constraints (4) the step components are rounded off to 
integer values. In contrast to the FDC method, which uses 
simplex with (n+1) vertices, where n is the number of circuit 
elements, the simplex in DCSDR method has (k+1) vertices, 
where k is the number of "sensitive" circuit elements. Another 
way used to make the search procedure in DCSDR faster than 
that one in FDC is to perform Monte Carlo analysis not in 
each simplex vertex like the FDC method, but only at the 
initial step and at the end of each DCSDR optimization 
iteration.   

Other specific feature of DCSDR method is that the initial 
simplex is constructed not as trivial regular simplex (see [6]), 
but in different way. Let J(x) be the output signal function of 
the circuit and Jd be the desired value of the output signal. To 
evaluate the steps quality during the DCSDR iteration the 
measure of deviation from the desired value is used: D(x) 
=⏐J(x)-Jd⏐ . Let among the vector variations obtained after 
the initial Monte Carlo analysis xB be the vector, for which 
D(xB) has minimal value and let xW be the vector, for which 
D(xW) is maximal. The vectors xMi, i = 1, …, n; are 
constructed, where xMi

j = { xB
j if i ≠ j; xW

j if i = j}. As starting 
simplex vertices are chosen vector xB and k vectors among 
xMi, i = 1, …, k; for which the deviation of J(x) is relative 
great, i. e. the k vectors corresponding to variations of 
"sensitive" elements. It is expected, that the optimization by 
reflection the worst simplex vertex through the weight center 
of the left over simplex vertices with objective - minimizing 
D(x) will move the simplex to a search space region, where its 
weight center would improve the F value. 

The steps of the method are presented as follows:  
Step 0. Give the starting value of: 

- iterations limit itlim, where itlim > 0,  
- the vector of elements parameters x(0),  
- lj and uj for each parameter xj , j = 1, …, n; 
       The tolerance value tolj = 100.(uj - lj)/(2.uj); 
- the lower and the upper bound for the output 

signal Lb and Ub. The desired output signal 
value is usually Jd=(Lb+Ub)/2.  

Set the iteration counter  icount = 0. 
Step 1. Perform a Monte Carlo analysis in x(icount)=x(0). Let 

D(x) has obtained its minimal and maximal value 
correspondingly in vectors xB and xW  during the 
analysis. In case F(x(icount))=0, go to Step 13. 
Otherwise go to Step 2.  

Step 2. Use xB and xW  to construct the vectors xMi: xMi
j = { 

xB
j if i ≠ j; xW

j if i = j}, i = 1, …, n.  

Step 3. Calculate the rate of influence on the output signal 
value for the change of each xi, i = 1, …, n; : σi = 
|[(J(xMi) –J(xB))/(J(xW) –J(xB)]/[( xW

i - xB
i)/xB

i]|. 
Create an index set I from indices i, for which σi

 > θ, 
where θ ∈ (0, 1) and could be different for different 
circuits. Usually θ = 0,03. Let there are k such 
indices in I, where k ≤ n.  

 
Iteration: 
Step 4. Fix the values of all elements, which indices i ∉ I. 

Construct a nonregular simplex in the reduced k-
dimensional space, determined by the left over 
elements. The simplex has k+1 vertices. One of them 
is xB and the others are xMi, i ∈ I.  

Step 5. Find among the k+1 simplex vertices the vector x(j), 
for which D(x(j)) = max D(x(i)), i = 1, ..., k+1; 

Step 6. Find  the weight  center  of  the  k  left  over simplex 
vertices: 

   xc = ∑
=

k

i

i
xk 1

)(1
          (13) 

Step 7. Construct the vector: 
    x = x(j) + λ( xc – x(j)),         (14) 

where λ = 2; (In case the last found vector x at Step 7 
is again that one with max D(x) start Step 7 with λ = 
1.5;) Round off each component xj to the closest 
feasible discrete value (see (4)), so that the 
constructed vector x ∈ Zn

+. In case D(x) < D(x(j), 
replace x(j) by x and go to Step 5, otherwise change λ 
(simplex contraction): λ=1.5 and construct a new 
vector x using (14). Round off each xj to the closest 
feasible discrete value. In case D(x) < D(x(j), replace 
x(j) by x and go to Step 5, otherwise change λ 
(simplex contraction): λ=1.25 and construct a new 
vector x using (14). Round off each xj to the closest 
feasible discrete value. In case D(x) < D(x(j), replace 
x(j) by x. Go to Step 8.  

Step 8. Find the weight center of all simplex vertices: 
 

   xt = ∑
+

=+

1

1

)(

1
1 k

i

i
xk

          (15) 

Step 9. Set icount=icount+1. Set x(icount) = xt. Perform a 
Monte Carlo simulation in x(icount). In case 
F(x(icount))=0, go to Step 13.  

End of the Iteration 
Step 10. In case the last iteration was unsuccessful, i. e. 

F(xt) has greater value than the last found F(x), and if 
there are components i ∈ I, for which xi has not 
being reflected towards the corresponding 
component xB

i during the iteration, then construct a 
vector p = Σ(x(icount-1)- xMi). Let among the simplex 
vertices x(j) be the vector, for which D(x(j)) = max 
D(x(i)), i=1,..., k+1; 
Construct the vector: 

    x = x(j) + p          (16) 
and perform a Monte Carlo analysis in it. 

Step 11. If icount = itlim go to Step 13.  
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Step 12. Let D(x) has obtained its minimal and maximal 
value correspondingly in vectors xB and xW  during 
the simulation. Construct the vectors xMi: xMi

j = {xB
j 

if i ≠ j; xW
j if i = j}, i = 1, …, n. Go to Step 4.  

Step 13. End of the search process.  
To complete the statistical optimization technology, the design 

centering should be followed by an optimal tolerancing search 
procedure. 

III.  ILLUSTRATIVE EXAMPLES 

A. Design centering of voltage regulator circuit 

The voltage regulator circuit from [4, 5] is used to illustrate 
the performance of DCSDR method (see Fig. 1). The 
parameters that can be optimized are the resistors R1, R2, …, 
R6 and the capacitor C1. Two applications of the voltage 
regulator circuit are studied: one for 24 V stabilized output 
voltage and another one for 15 V stabilized output voltage.  

• The output voltage of the circuit should be constant 24 ± 
0.5 V and the desired value Jd = 24.00 V. This case was 
studied in [4, 5]. The objective here is to minimize F (see 
(1)) until F=0. The Monte Carlo analysis is performed 
with 100 randomly generated circuits with given 
tolerances.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Voltage regulator circuit 

After a Monte Carlo analysis with 1% tolerance for all R, C 
elements the circuit output J(x) did not violate the Lb and Ub 
bounds in all the 100 cases. When 2% tolerance of elements 
values was chosen, 3 from 100 randomly generated circuits 
had an output voltage above 24.5 V, i. e. F=3, when m=100, 
tolj = 2%, j = 1,…,7;. The results obtained after one DCSDR 
iteration are as follows:  R1 = 1810Ω, R2=100Ω, R3=472Ω, 
R4=820Ω, R5=476Ω, R6=2451Ω and C1=5µF.  The optimal 
tolerances found for the corresponding circuit elements are: 
15%, 15%, 15%, 10%, 2%, 2%, 15%.  

• The circuit from Fig. 1 was tested here subject to another 
output voltage constraints: The output voltage should be 
constant 15 ± 0.15 V and the desired value Jd = 15.00 V. 
In this case the constraints are stronger than in the first 
one. The tolerances are accepted to be 1% for all circuit 
elements. At the initial solution 2 from 100 randomly 
generated circuits had an output voltage above 15.15 V, i. 
e. F=2, when m=100, tolj = 1%, j = 1,…,7;. The elements 

which have influence on the circuit output value are R2, 
R4, R5 and R6. At Step 3 are calculated: σ2 = 1.68, σ4 = 
3.04, σ5 = 39.76, σ6 = 39.23. As sensitive are accepted 
the elements R5 and R6. The reduced dimension of the 
search space is 2. The results obtained after the first 
DCSDR iteration are presented in Table 1.  

Higher tolerance values for the found solution xt lead to 
fail.  

 

TABLE 1 
Solution F R1 

[Ω] 
R2 
[Ω] 

R3 
[Ω] 

R4 
[Ω] 

R5 
[Ω] 

R6 
[Ω] 

C1 
[µF] 

x(0) 2 1800 100 470 820 449 1356 5 
xB  1800 100 470 820 455 1355 5 
xW  1798 100 472 824 452 1363 5 
x(1) λ=2  1800 100 470 820 461 1372 5 
x(2)λ=1.5  1800 100 470 820 460 1359 5 
xt 0 1800 100 470 820 459 1362 5 
 

B. Design centering of pulse controlled voltage regulator 
 

A pulse controlled voltage regulator from [1] is used as 
second experimental circuit. It is presented on Fig. 2 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Pulse controlled voltage regulator 

The parameters that can be optimized are the resistors R1, 
R2, R3 and the capacitor C1. The output voltage of the circuit 
should be constant 15 ± 0.15 V and the desired value Jd = 
15.00 V. The tolerances are accepted to be 10% for all circuit 
elements. At the initial solution 53 from 100 randomly 
generated circuits violated the constraint on the output voltage 
value, so F = 53. At Step 3 are calculated: σ1 = 0.57, σ2 = 
1.81, σ3 = 3.7, σ4 = 0.027. As sensitive are accepted the 
elements R2 and R3. The reduced dimension of the search 
space is 2. The first DCSDR iteration was unsuccessful. The 
method from [5] would stop the optimization without finding 
a better solution. A look at the output voltage histogram from 
Fig. 3 (upper one) could explain this drawback. The 
histogram of the stabilized output voltage value for the initial 
design is close to Gaussian distribution and means, which is 
14.987 V, is very close to the desired value of 15 V. To 
overcome the mentioned drawback the new Step 10 is added 
to DCSDR method. The design centering continues following 
the improved method. The fail is reduced for the optimal 
circuit values from 53% to 33%. The histogram for the 
stabilized output voltage for the optimized circuit is presented 
on Fig. 3 (the lower one). The means in this case is 15.027 V. 
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The distribution in the optimized design is similar to the 
initial one, but slowly shifted to the right and thus follows 
better the constraints. The optimized element values will be a 
better start point for a future optimal tolerancing and will 
permit 100% yield (0% fail - F=0) with lower tolerance 
reduction, than in the initial case. The results for the 
optimization steps are presented in Table 2. 

TABLE 2 

Solution F R1 [Ω] R2 [Ω] R3 [Ω] C1 [µF] 
x(0) 53 340 60 47 32 
xB  341 60 47 32 
xW  340 57 37 34 
x(1)   λ=2  340 57 57 32 
x(2)  λ=1.5  340 59 45 32 
x(3)  λ=2  340 58 49 32 
xt 59 340 58 48 32 
x 33 340 61 49 32 
 

The histograms of the circuit before and after design centering 
from Fig. 2 are presented on Fig. 3. 

Fig. 3. Histograms for the output voltage of pulse controlled voltage 
regulator before and after design centering 

IV.  CONCLUSION 

The paper presents the improved version of DCSDR method 
for design centering using search space with reduced 
dimension. Comparing the efficiency of FDC method [4] and 
of DCSDR method [5], the last method is more efficient 
because it performs (itlim+1) Monte Carlo analyses and 
itlim.(k+1) evaluations of J(x). The FDC method performs 
[(n+1) + itlim] Monte Carlo analyses. For the test experiments 

here one Monte Carlo analysis generates 100 random circuits, 
i. e. 100 evaluations of J(x) are calculated.  Usually n > k and 
the iteration limit itlim is a small positive integer. The 
improved DCSDR method performs one more Monte Carlo 
analysis if Step 10 is used at the end of calculations, but this 
method is able to solve design centering tasks when the initial 
design values are close to the optimal ones. This case was 
unapproachable by the method from [5]. The new method was 
tested on three different circuit designs, which confirmed its 
advantages compared to the former version. 
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