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 Introduction of Heaviside Criterion Fulfillment Factor for 
Transmission Line Analysis 

Bratislav Milovanović1, Aleksandar Marinčić2, Nebojša Dončov1 
 

Abstract –In this paper, Heaviside criterion for TEM 
transmission line, that provides wave propagation along a 
line without dispersion, is presented. Through an 
introduction of Heaviside criterion fulfillment factor, an 
influence of per-unit length inductance increase on the 
transmission line behaviour is discussed. Limit values of 
characteristic propagation functions are derived and an 
analysis of their behaviour in the frequency domain for 
different values of proposed factor is done. 

Keywords – transmission line, Heaviside criterion, fulfillment 
factor   

I. INTRODUCTION 
The effect of loss on a transmission line causes attenuation 

and dispersion of a propagating wave. With dispersion, 
different frequencies in a signal spectrum propagate with 
different velocities and lead to distortion of any non-
sinusoidal wave form. Both the attenuation and distortion 
resulting from loss in transmission lines were responsible for 
the delay in the development of long distance telephone 
communication of speech in the early days of the telephone. 
In 1893, Heaviside developed the transmission line theory 
based on Maxwell’s equations [1], which made preconditions 
for a telephone transmission of human voice over a long 
distance. Until that time, the transmission line was described 
by a diffusion equation, which in circuit term, involves a 
distributed series resistor and paralell capacitor network. 

Taking proper account of the inductance, Heaviside 
noticed that the effects of attenuation and distortion both 
decreased as inductance is increased. Analysing the frequency 
dependence of propagation constant, he derived the relation 
between the primary per-unit length parameters of 
transmission line (so-called Heaviside criterion) from the 
condition of minimum losses. When this criterion is fulfilled, 
both attenuation constant and velocity of propagation are 
independent of frequency. Transmission line with such 
primary parameters has an infinitive bandwidth assuming that 
only TEM wave propagates. In that case, an output signal is of 
the same waveform as an input signal; it is only attenuated 
and delayed in regard to the input signal. 

As telecommunication lines generally have a small per-
unit length inductance (LG << RC), Serbian scientist Mihajlo 
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Pupin suggested that, in order to increase inductance, 
telephone lines should be loaded in series with discrete coils 
placed at regular intervals along a line [2,3]. In 1900, he 
experimentally verified the proposed approach in his 
laboratory at Columbia University in USA. This method, 
today well-known as Pupin loading, is still used in local and 
trunk telephone lines. At frequencies for which wavelength λ 
is a significantly greater than the spacing a of the loading coils 
(λ >> πa [4]), pupinized line is behaved as an equivalent line 
obtained as if L were increased continuously along the line.  

This paper represents a continuation of novel research 
work, presented in references [5,6], established with the main 
goal to enlighten the scientific achievements of Mihajlo 
Pupin. In this paper, an influence of per-unit length inductance 
increase on transmission line characteristics is presented. For 
that purpose, a new parameter - Heaviside criterion fulfillment 
factor is introduced. Also, the limit values of characteristic 
functions determining propagation along the line, for two end 
frequencies, ω→0 and ω→∞ are derived. Their behaviour in 
the frequency domain for different values of suggested factor 
is analysed and the appropriate conclusions are given.  

II. PARAMETERS OF LOSSY TRANSMISSION LINE 
Propagation constant of a lossy TEM transmission line can 

be expressed as [4]: 

( ) ( ) ( ) ))(( CjGLjRj ωωωβωαωγ ++=+=         (1) 

where: α is an attenuation constant in Np/m or dB/m, β is a 
phase constant in rad/m, R, L, G and C are primary per-unit 
length resistance, inductance, conductance and capacitance of 
transmission line, respectively and ω is a radial frequency in 
rad/s. Solving a system of two equations, obtained by equating 
the real and imaginary parts of left and right side of Eq.(1), for 
unknown α and β, leads to: 

( )
2222

2

2
)(

22
⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

−
=

RCLGRGLCLCRG ωωωωα   (2) 

( )
2222

2

2
)(

22
⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+

−
=

RCLGRGLCRGLC ωωωωβ   (3) 

How attenuation constant depends on frequency, different 
components in signal spectrum will be differently attenuated. 
This effect, known as amplitude distortion, is combated with 
the use of band-pass filters, which split the signal into various 
frequency bands at the output end. For each band different 
application factor A is used so that product α(ω)A(ω) is 
constant at all frequencies. 

Characteristic impedance of lossy TEM transmission line 
is a complex quantity as well and it can be calculated as: 
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In telecommunications, a modulated signal is regularly 
propagated along the line, occupying a considerable frequency 
band. Two quantities can be used to define its velocity of 
propagation: the phase velocity, vp, as a velocity of 
propagation for the carrier and the group velocity, vg, as a 
velocity of propagation for the envelope of modulated signal 
or velocity with which energy is propagated along the line: 
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In reality, function β(ω) is not a straight line so that vp and 
vg are generally different from each other. Also, they vary 
with frequency. Since the group velocity represents velocity 
of propagation of the various components in the modulated 
signal frequency spectrum, the time taken for the components 
to be propagated along a line of given length will not be the 
same. Then, it would be impossible to reconstruct the 
spectrum of transmitted signal at output which leads to the  
so-called signal phase distortion. Such an effect, known as 
dispersion, is a great problem in telecommunications and it 
can be overcome by inserting expensive variable delay lines in 
each frequency band. For a unit length line, the phase and 
group delay are related to the phase and group velocity as: 
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Of possible interest for an analysis are values of 
previously defined parameters for ω→0 and ω→∞. To 
determine them, we start from the product of phase and group 
delay: 
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Finding the derivation of Eq.(3) per ω, it can be obtained: 
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Using L’Hopital’s rule and the previous equation, the 
value of phase delay for ω→0 is: 
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Applying ω→0 on Eq.(7) and using Eq.(9) it can be shown 
that the values of phase delay and group delay are equal for 
ω→0: 
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Similarly, the values of phase and group delay for ω→∞, 
can be found as: 
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The values of phase constant and characteristic impedance 
for these two end frequencies are easily obtained from Eqs.(3) 
and (4), respectively, and they are: 
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To determine the limit values of attenuation, the following 
relation between attenuation and phase constant is used: 

( ) ( )
( )

( )
ωωβωβ

ωωα
/)(

2/
2

RCLGRCLG +
=

+
=              (14) 

Having in mind that denominator in last equation 
represents phase delay whose values for two end frequencies 
are already determined by Eqs.(10) and (12), the values for 
attenuation constant for ω→0 and ω→∞ are: 
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III. HEAVISIDE CRITERION 
The condition of minimum losses is obtaned from 

dα2/dL=0 which, using Eq.(2), can be expressed as [4]: 
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From the last equation, the well-known Heaviside criterion 
is yielded: LG=RC. When this relation is fulfilled, attenuation 
along a line and its characteristic impedance are independent 
of the frequency while a phase characteristic linearly depends 
on frequency. Eqs.(2), (3) and (4) are simplified: 
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The transmission line with such primary per-unit length 
parameters, satisfying Heaviside criterion, imposes an equal 
phase and group delay for all components in signal spectrum 
which means that any signal will be propagated along the line 
without distortion: 

( ) ( ) LCgp == ωτωτ                          (20) 

IV. HEAVISIDE CRITERION FULFILLMENT FACTOR 
For the transmission line with primary per-unit length 

parameters R, L, G and C, the required inductance for 
fuffillment factor of Heaviside criterion is obtaned as: 

G
RCLH =                                   (21) 

We note the ration of per-unit length inductance of the line 
and required Heaviside's per-unit length inductance as l=L/LH. 
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The values of characteristic propagation functions for two end 
frequencies ω→0 and ω→∞ as a function of factor l as well as 
their values for l=1 are given in Table 1. 

Propagation 
functions ω→0  ω→∞ 

Heaviside 
condition (l=1) 
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Table 1 Values of characteristic propagation functions for 
ω→0, ω→∞  and Heaviside criterion   

In order to graphically illustrate the areas of changes of 
characteristic propagation functions with frequency, new 
functions have been introduced and shown in Fig.1: 
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Fig.1 Areas of changes of characteristic propagation 

functions with frequency versus factor l 
The lines used in telecommunications have a small per-

unit length inductance and as a result, factor l is, in reality, 
always smaller than 1 (even with inserted Pupin coils) but for 
the purpose of theoretical analysis, the values of l bigger than 
1 are taken into account as well. From the Fig.1 it can be 
noticed that the increase of factor l narrows the area of 
possible changes of attenuation and characteristic impedance 
as well as phase and group delay with frequency. This 
behaviour is valid until l equal to 1 and then there is a 
reversed proces with the further increase of l. In addition, 
around l=1, the changes of these parameters with frequency 
can be neglected. From the Table 1 and Fig.1 the following 
relations which identify the areas of changes of attenuation 

constant, characteristic impedance, phase and group delay 
with factor l are: 
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Dependance of attenuation constant, characteristic 
impedance, phase and group delay, normalized with their 
value at fulfilled Heaviside criterion, as well as the value of 
phase constant for different values of factor l are shown in 
Figs.2,3,4,5 and 6, respectively. The considered frequency 
range is up to 4 KHz because it is suitable to the baseband 
telephone signal transmission. Besides, at these relatively low 
frequencies, the variation of primary per-unit length 
parameters with frequency can be neglected. Primary 
parameters used for calculation are those used for La Manche 
channel cable [5]: R=14.2 Ω/mile, C=138 nF/mile and G=24 
µS/mile. Inductance required for fulfillment of Heaviside 
criterion is obtained from Eq.(21) as LH=0.08165 H/mile. The 
value of factor l is changed by increasing per-unit length 
inductance of line. 

From the Fig.2 it can be seen that normalized attenuation 
curves, independantly from factor l, start from 1 or αH, and 
then monotonically increase approaching asymptotically, with 
frequency increase, to the lines determined with function fk(l). 
This behaviour is the same for factor l and 1/l, because fk(l)= 
fk(1/l), (curve α(l) is symmetrical in regard to l=1, see Fig.1). 

 
Fig.2 Normalized function α(ω) for different values of factor l 
 

Characteristic impedance curves show a different 
behaviour for factor l and 1/l (Fig.3). In both cases, these 
curves start from 1 or ZcH , and with frequency, they are 
approaching asymptotically to the lines fg(l). However, in the 
first region (l<1), curves of characteristic impedance 
monotonically decrease, while in the second region (l>1) 
monotonically increase.  

Curves of phase and group delay (Fig.4 and 5), for given l, 
start from the points defined by function fa(l) and, with 
frequency increase, they are approaching to the lines whose 
location is determined by function fg(l). In the frequency range 
up to 100 Hz, the changes of phase and group delay with 
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frequency are the most significant. For l>1 delays are greater 
than the values corresponding to Heaviside criterion, τpH = τgH, 
given in Table 1, and for l<1 inserted delays are smaller. In 
addition, for the same value of factor l, phase delay and group 
delay start from the same point and finish at the same point. 

 
Fig.3 Normalized function Zc(ω) for different values of factor l 

 
Fig.4 Normalized function τp(ω) for different values of factor l 

 
Fig.5 Normalized function τg(ω) for different values of factor l 
 

In Fig.6 the values of phase constant, calculated by using 
Eq.(3), are shown for different values of factor l. It can be 
noticed that the curve representing dependance of phase 
constant with frequency is linearized with increase of l. For 

l=1 the value of phase constant corresponds to its value at 
fulfilled Heaviside criterion, βH,  given in Table 1. In that case, 
signal is propagated along the line without dispersion while 
phase velocity and group velocity are equal at all frequencies. 
 

 
Fig.6 Function β(ω) for different values of factor l 

V. CONCLUSION 
In this paper, a behavior of characteristic functions, 

definining propagation along a lossy TEM transmision line, as 
a function of per-unit length inductance increase is analysed. 
For an analysis purpose, a new parameter - Heaviside criterion 
fulfillment factor is introduced. Limit values of considered 
functions are expressed through the proposed factor. 
Presented results allow for, for an example, an estimation for 
how much per-unit length inductance should be increased (by 
inserting Pupin coils) to keep changes of attenuation, phase 
and group delay in acceptable limits from the signal 
propagation dispersion point of view. Future research will be 
based on a full wave matrix analysis of pupinized 
transmission line as a function of number of equally inserted 
discrete coils per wavelength corresponding to the maximum 
frequency of interest. 
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