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Abstract – The work presents a domain decomposition 
approach for coupled magnetic and thermal fields at low 
frequency applications in electromagnetic devices. The analysis 
domain for the two fields is divided into overlapping subdomains 
where the decomposition pattern is imposed by physical 
considerations. In this way a substantial reduction of the 
computing resources is obtained. As target example we consider 
the electric furnace based on the induction-heating phenomenon. 
The model is an axisymmetric field both for magnetic field and 
the thermal field. The mathematical model for magnetic field is 
based on time-harmonic Maxwell equations in vector magnetic 
potential formulation for axisymmetric fields. The model for the 
heat transfer is the heat conduction equation. A numerical model 
based on the finite element method is developed. 

Keywords – Coupled fields; domain decomposition; finite 
element method; numerical simulation; induction heating. 

I. INTRODUCTION 

An electric engineering problem can be formally divided 
into electric and magnetic sub problems, with disjoint or 
overlapping subdomains. In each subproblem we can use 
different mathematical models with interface conditions on 
the common pseudo boundaries between electric and magnetic 
subdomains. In other words we must choose between two 
options: 
♦ An artificial subdivision which is the general principle of 

the domain decomposition 
♦ A natural division imposed by the problem particularities 

An artificial subdivision of the whole field domain does not 
change the solution of the field problem but a natural 
subdivision can lead to a better convergence. The pseudo 
boundary surface may be selected to follow some natural 
surfaces, such as the material interface. 

The pseudo boundary conditions are treated in terms of the 
mathematical models developed in each subdomain. For 
example in the electromagnetic problems we can use different 
potential formulations (scalar and/or vector potentials).   

The differences appear at the pseudo boundary. In principle 
the treatment of the pseudo boundary condition is the same 
but in vector potential formulations we have a vector quantity. 
Let us consider the magnetic field problem in the induction 
heating for the target example. Let us suppose that the domain 
is divided into 2 disjoint subdomains Ω1 and Ω2 with the 

common pseudo boundary SB. The natural interface condition 
for this problem is: 
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The subscripts 1 and 2 refer to the two regions that the 
pseudo boundary separates and the normal direction on the 
interface surface is assumed to point from subdomain 1 into 
subdomain 2. Physically, the interface condition means that 
the tangential magnetic flux density has a discontinuity if the 
permeability differs in the two media: 
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where the subscript “t” indicates the part of the vector B 
which lies in the tangential plane at the interface surface. If 
the permeability is a scalar, the direction of the tangential 
vector is the same on both sides of the interface. 

The natural boundary condition at an exterior boundary S of 
the whole domain can be considered for zero-reluctivity space 
as: 

0=tB  
These boundary conditions are natural and therefore, they 

need not be explicitly imposed on any approximate solution. 
If we consider the A-formulation and FEM for a 2D domain 

Ω with the boundary Γ, the Galerkin's method leads to the 
following equation for steady-state magnetic field: 

0=d
n

A
NdNJ-NA(

e
Γ∫

Γ ∂

∂
−Ω⋅∇⋅∇∫

Ω
.) υν  

with A the unknown vector potential and N the weighting 
vector function. 

At a boundary point between two subdomains, A and ∂A/∂n 
are supposed unknown in each subdomain. The FEM gives an 
equation for each subdomain so that two equations are 
necessary to have a complete system. At the interface between 
two magnetic media those conditions are the continuity of the 
vector potential A and of the tangential magnetic field Ht = 
ν.∂A/∂n. 

In this work we limit the discussion to the through heating 
by induction. The process is critically dependent on the 
uniformity of the temperature in the workpiece so that a 
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computer-aided design of the induction devices is a major 
requirement of the design [4]. 

II. MATHEMATICAL MODELS FOR COUPLED FIELDS 
IN INDUCTION HEATING 

Induction heating is a convenient method for bulk-heating 
metals to a prescribed temperature. In our target example we 
consider a long iron cylindrical workpiece immersed in the 
field of a cylindrical coil (solenoid) supplied with alternating 
current. In figure 1 an axial section in the device is shown. 
The coil (3) is formed by rectangular bars and is surrounded 
by the air (2). The coil is normally water-cooled and has 
refractory lines. 

The problem of induction heating in this example is an 
axisymmetric problem. Some standard assumptions are 
considered that lead to a 2D-scalar problem: 
♦ The device has a rotational symmetry 
♦ Current density J has only the azimuthal component in 

the θ-direction 
♦ Materials have isotropic physical properties 
♦ The source is a coil with wires of rectangular cross-

section 
This application can be modelled using mathematical 

models for axisymmetric fields because both magnetic field 
and thermal field have geometrical and physical symmetry. In 
other words we can use the differential models in cylindrical 
coordinates for axisymmetric fields. 

The mathematical model for the electromagnetic field using 
A-formulation is a 2D-scalar model in (r-z) plane [1]: 
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or for the harmonic-time case: 
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Equation (1) represents the electromagnetic field 
description, with σ – the electric conductivity, ν – the 
magnetic reluctivity and Js - the excitation current density. It 
is solved with specified initial and boundary conditions that 
depend on the problem.  

The heat transfer problem in homogeneous orthotropic 
material is described in terms of the temperature T ([1],[2]): 
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The significances of the quantities are: T(r,z,t) is temperature 
in the point with co-ordinates (r, z) at the time t; k is the tensor 
of thermal conductivities; γ is the specific mass; c is the 
specific heating and J is the global current density. The 
current density J includes both the driving and skin effect. The 
term J can be computed as  

HJ ×∇=  
In the inner and outer thermal insulating layers of the coil 

the driving term is missing. 

The boundary conditions are convective and radiation 
conditions, that is: 

)( ∞−=
∂

∂
− TTh

n

T
k   (4) 

)44( ∞−=
∂

∂
− TTrn

T
k α   (5) 

where h and αr are the transfer coefficients at the 
boundaries. 

The model is non-linear because the specific heat c and the 
thermal conductivity k are dependent on the temperature. The 
coupling between the magnetic and thermal fields is 
represented through both the heat sources in (3) and the 
dependency on the temperature of the electromagnetic 
properties from (1). 

 
Conventional coils are constructed from hollow copper pipe 

and are water-cooled to remove the heat generated in the 
conductors. An alternative approach is to use litz-wire in the 
construction of the coil, thereby ensuring that the losses in the 
coil are reduced. Nearly all through-heating coils use thermal 
insulation between the coil and the workpiece. This protects 
the winding and its insulation from the radiant heat and acts as 
a muffle around the workpiece. The coil conductors are 
characterised by the lack of eddy currents in a simplified 
model.  

III. A NUMERICAL MODEL BASED ON THE 
OVERLAPPING DOMAIN DECOMPOSITION 

The domain decomposition can be used only for magnetic 
field computation [3], or it can be used in coupled model by a 
strategy that we present in this section. The analysis domain 
plotted in the figure 1 can be decomposed in two subdomains 
that are not disjoint. The physical considerations are followed 
in this decomposition. For many eddy-current problems the 
magnetic flux penetration into a conductor without internal 

 
Fig.1.  An axial section in device 
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sources of the magnetic field is confined mainly to surface 
layer. This is the skin effect. The skin depth δ depends on the 
material properties µ, ω and σ so that for the small depths all 
of the effects of the magnetic field is confined to a surface 
layer [4].  

In steady-state low-frequency eddy current problems in 
magnetic materials, the mathematical model is the diffusion 
equation (1). The skin effect can be exploited in two 
directions: 
♦ To reduce the space domain in analysis  with a fine mesh 

close to conductor surfaces 
♦ To reduce the material volume since a significant 

proportion of the conductor is virtually unused  
The penetration depth is given by the formula [4]: 

ωσµ
δ

2
=    (6) 

In other words for problems with the skin depth very small 
all the effect of the field is confined to a surface layer. 
Designer engineers use the formula (6) considering the 
permeability and the conductivity as constants. In reality the 
two physical parameters change during heating. The changes 
in the value of δ affect the loss in the material and depend on 
the process (conduction or induction). For example, if the 
conductivity decreases by x, the depth increases by √x, that is 
the current penetrates deeper into the metal.  If the magnetic 
material heats, its resistivity (the inverse of the conductivity) 
rises but its relative permeability remains substantially 
constant up to the Curie point. In this point it drops suddenly 
to unit. 

For low frequency applications the field depth is large. For 
an industrial frequency we can compute the depth in 
workpiece and limit the magnetic field analysis at this depth. 
In the thermal field analysis we reduce the field domain at the 
workpiece. The two domains are overlapping on a surface 
defined by the penetration depth of the magnetic field in 
workpiece. For a range of the frequencies and the 
temperatures we can compute the range of the depth 
penetration. In order to cover the whole domain of frequencies 
we select the maximum value of the depth. The depth 
penetration depends on the material properties so that the 
boundary of the field in conductor can change in time. 

In the figure 1 the field domain in a finite element model is 
plotted with the horizontal axis Oz and vertical axis Or.  For 
the thermal field we use a Neumann boundary condition, 
combining a given boundary heat flux with convection and 
radiation: 
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with ∞T - the surrounding medium temperature, qn the heat flux 
and  n the outward unit normal on the boundary. 

IV. NUMERICAL RESULTS 

 Figure 1 shows a long cylindrical workpiece excited by a 
close-coupled axial coil. The problem is an axisymmetric 
heating device. The coil is assimilated with a massive 

conductor. In the numerical model we can consider or ignore 
the eddy currents in the coil. If we ignore the eddy-currents in 
the coil the electric conductivity is equal to zero and the 
domain for thermal field is reduced to the workpiece volume. 

The geometry and the physical properties are defined as in 
the tables I, II and III. 

  
TABLE I 

Coil conductor’s properties 
Relative permeability 1 
Conductivity 6.3 107    S/m 
Thermal conductivity 140         W/K.m 
Specific density 380          J/Kg.K 
Metal density  8700        Kg/m3 

 
TABLE II 

Workpiece’s properties 
Relative permeability 500 
Conductivity 1 107      S/m 
Thermal conductivity 100         W/K.m 
Specific density 200          J/Kg.K 
Material density  7800        Kg/m3 

 
TABLE III 

Air’s properties 
Relative permeability 1 
Conductivity 0             S/m 
Thermal conductivity 0.01         W/K.m 

The depth penetration for a low frequency was 4 mm. The 
amplitude of the current in the coil is 40 000 A. 

In the figures 3-5 the results of the numerical simulation are 
plotted using QuickField [5]. The finite element method was 
used for the numerical modelling both magnetic field and 
thermal field. In fig. 3 the temperature of the workpiece 
surface is plotted. Starting with the initial temperature 40 0C, 

 
Fig.2.  The analysis domain for magnetic field 
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the variations of the temperature in two points are plotted in 
the figure 5. 

In fig. 4 the final distribution of the temperature on the axis 
of the workpiece in the center direction is plotted.  

Some relevant aspects must be considered in the design of 
the CAD software for coupled magneto-thermal problems: 
• The thermal source term in the heat equation can be 

defined by the time-mean of the ohmic power loss. The 
motivation is simple: the time constant of the magnetic 
phenomenon is small compared to the diffusion time of 
the heat transfer. 

• A cascade solution may be more efficient than a fully 
coupled model. In some applications there is a strict 
coupling between magnetic and thermal equation at each 
time instant, but in many situations we can split the 
analysis of the magnetic field by the analysis of the 
thermal field. 

• It can be used a predefined temperature profile of a 
material for updating the magnetic field at specified 

temperatures. For example, at Curie temperature the 
material properties change dramatically. After this 
critical point the magnetic field equation must be 
updated. 

• The analysis domain can be divided in more subdomains 
with different solvers for the coupled problems. 

 

V. CONCLUSIONS 

In this paper we presented a numerical model for the 
induction heating of cylinders in large furnaces. The model 
was based on the simplifying assumptions but we did not 
ignore the non-linear effect of the temperature distribution. 
The radiation effect and convection were considered on the 
workpiece surface.  
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Fig.3.  The final temperature on the external surface of the 

workpiece 
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Fig.4.  The final temperature on the axis of the workpiece 
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Fig.5.  The temperatures in the center and in the corner  of 
the workpiece (the above curve)


