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A Simplified Model for Coupled Magnetic and Thermal 
Fields in High Frequency Applications 

Daniela Cârstea1, Ion Cârstea2, Alexandru Cârstea3 

 
Abstract – The work presents a simplified model for coupled 

magnetic and thermal fields in solid conductors in the context of 
the finite element method.  

Our target example is the induction heating at high frequency 
where the depth penetration of the magnetic field in a conductor 
workpiece is very small. This fact is exploited in the sense of 
reduction of the analysis domain and computational effort. In a 
numerical model based on finite element method (FEM) this 
effect can be exploited by the use of a special boundary 
condition, known as the surface impedance condition. In this way 
we don’t waste run-time of a program based on FEM. 

The mathematical model for magnetic field is based on 
Maxwell equations in vector magnetic potential formulation for 
axisymmetric fields. The model for the heat transfer is the heat 
conduction equation. A numerical model based on the finite 
element method is developed.  

Keywords – Coupled fields; finite element method; numerical 
simulation; induction heating. 

I. INTRODUCTION 

Induction heating is used extensively in the metal industry. 
It is an illustrative engineering example for the thermal 
conductivity problem in which the heat is generated by ohmic 
losses from eddy currents induced in conducting materials, 
such as metals. 

Induction heating is a convenient method for bulk-heating 
metals to a set temperature. It replaces furnaces, which tend to 
be large and which have the disadvantage of long start-up and 
shutdown times, so that their effectiveness is low. The 
induction heater is relatively small in size and is immediately 
available for use. It is clean and relatively efficient. 

The special feature of induction heating is that the heat is 
produced in the material by currents flowing in it. In induction 
heating, the heat is generated by the passage of currents 
through the material but they are induced from a separate 
source. 

 Whatever the configuration, induction heating always 
involves a varying magnetic field. An induction-heating 
device can be assimilated to a transformer. The metal to be 
heated becomes the secondary circuit of a transformer. In a 
simplified model, the primary coil it always constructed of 
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copper, since it is important to keep losses to a minimum so 
that the heating is done to maximum efficiency. 

From the general theory, the induced currents will 
effectively flow in about a skin depth δ – depending on 
frequency of the source current and the two properties of the 
material - resistivity and relative permeability. 

In this section we present some algorithmic skeletons for 
numerical simulation of the induction heating in metal 
cylinders using linear and non-linear models. The example is 
a model for the induction-heating furnace without iron core. 

In the electromagnetic problems the field domain consists 
of more regions that differ by the electric properties. Thus, in 
induction heating the analysis domain consists in the 
following region: 
• A conducting region where the eddy currents are 

induced 
• A conducting region with externally imposed currents 

and the magnetic permeability of the free space 
• A non-conducting region with low permeability 

magnetic materials without any kind of currents 
In each region we can use different potential formulations 

and the coupling of the three regions is ensured by the 
interface conditions: the continuity of H x n and B.n. 

The choice of the potential formulation in each region is a 
difficult task and depends on the problem particularities. In 
several cases the problem characteristics and the computation 
accuracy required allow a decoupling and a cascade solution. 
If this approach is not possible an approach which is 
frequently applied is to solve each equation separately and to 
recouple them in some way. 

II. MATHEMATICAL MODELS FOR COUPLED FIELDS 
IN INDUCTION HEATING 

Many areas of electrical engineering require the solution of 
problem in which the electromagnetic field equations are 
coupled to other partial differential equations, such as those 
describing thermal, fluid flow or stress behaviour. These 
phenomena are described by equations that are coupled. The 
coupling between the two fields – electromagnetic and thermal -
is a natural phenomenon and only in a simplified approach the 
field analysis can be treated as independent problem.  

 In several cases, it is possible a decoupling and a cascade 
solution of the coupled equations. One approach is to solve 
each field equation separately, recouping then the set in some 
way. 

Another attractive and efficient approach of solving 
coupled differential equations is to consider the set as a single 
system. In this way a single linear algebraic system for the 
whole set of differential equations is obtained after 
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discretization, and is solved to a single step. If one or more 
equations are non-linear, non-linear iterations of the whole 
system are required. 

Generally, in the mathematical and numerical simulation of 
transient induction heating problems, it is necessary to solve 
two systems of equations: one for the electromagnetic field 
and the other for the thermal field. These systems are strongly 
coupled and non-linear, since the thermal sources represent 
the electromagnetic field effects and the magnetic and thermal 
properties of the material change with the temperature. This 
inherent coupling of the two mathematical models leads to an 
increase in the numerical model dimensions due to the 
vectorial nature of the electromagnetic quantities. 

The mathematical models of the coupled fields are: 
• the transient heat conduction equation with boundary 

conditions of convective and radiation type 
• Maxwell equations in potential formulations (especially 

in multi-potential formulations) 
The constructive particularities of the electromagnetic 

device must be accounted for in a numerical model in order to 
develop efficient computer program. For example, the main 
particularities of the induction heating are: 
• The thermal time constants are bigger than the electric 

time constants. 
• The heat source is the power dissipated by the eddy 

currents so that the accuracy of the computation of the 
eddy current density influences the problem accuracy 

• The workpieces are generally composed by only a single 
material so that it is not necessary to include 
discontinuities in the electric conductivity 

• The variations of the electromagnetic properties 
(permeability, electric conductivity) are continuous. 

The particularities of the problem can be exploited in some 
directions although a unified approach is a desirable 
requirement for an expert system in the area of coupled 
problems. The following directions can be exploited in our 
target example: 
• The electromagnetic computation can be done as a 

sequence of sinusoidal electrical steady-state 
• The most important electromagnetic field parameter 

from the viewpoint of the thermal field is the current 
density so that the computation accuracy of this quantity 
is very important 

• The lack of discontinuities in electric conductivity 
allows the use of magnetic vector potential formulation 

• The computation accuracy of J depends of the 
simulation method. For example, if J is derived by a 
“rot” operation as J= rot H, the accuracy of J is not the 
same accuracy as H. If the density is directly computer 
as J=-jωσA, then the accuracy of J is the same accuracy 
as A. 

The mathematical model for the heat transfer is the heat 
conduction equation: 
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The significances of the quantities are: T(r,z,t) is temperature 
in the point with co-ordinates (r, z) at the time t; k is the tensor 
of thermal conductivities; q is the heat source (the ohmic 
losses due to the eddy-currents); g is a known function that 
leads to convection, Neuman or radiation condition. 

The electromagnetic field model is Maxwell’s equation in 
formulation with the magnetic vector potential A: 
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with J – the total current density: 

V)+
t

A
(-=J ∇

∂

∂
σ    (5) 

Induced losses are: 
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For the magnetic field there are two basic types of boundary 
conditions on the boundary Γ of the space domain Ω (Dirichlet 
and Neumann conditions): 
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where the subscript n has the significance of the normal 
component of the field variable. 

In harmonic time applications, with V a scalar electric 
potential, the electric the current density is: 

**-* V-Aj=J ∇σσω  
and the field model becomes: 

0=V+Aj+)A( *** ∇×∇×∇ σσων  (6) 
where the superscript * denotes the complex value. 

III. A SIMPLIFIED NUMERICAL MODEL  

The computation of the eddy current distribution in a 
conductor using 3D model is a difficult and computationally 
expensive problem. To reduce the computation complexity the 
concept of the surface impedance is used. This approach is 
appropriate in those applications where the skin depth of the 
eddy currents induced is small compared with the thickness of 
the conductor. The idea of this approach is simple: the 
conductor is replaced by an appropriate boundary condition. 

For many practical eddy current problems as the induction 
heating devices the magnetic flux penetration is confined to 
surface layers. Thus, a sinusoidal magnetic field with the 
amplitude Bm at the conductor surface and parallel to the 
surface has an exponential decay in the conductor: 
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In a point on surface of the conductor, the surface 
impedance is defined by the components of the electric and 
magnetic fields: 

s

t
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where subscripts t and s denote the tangential direction for 
the two fields. The tangential magnetic field, Hs, is due to 
excitation. 

If the skin depth δ is small, it is not economic to do a 
discretization of the solid conductor. This idea is exploited in 
many numerical models by considering a special boundary 
condition known as the surface impedance condition. In an A-
formulation for two-dimensional magnetic problems the 
boundary is: 
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This condition in a finite element model leads to the 
evaluation of a term as: 
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In the modelling of the induction heating we can use this 
concept by decomposition of the whole domain into two 
subdomains.  

As target example we consider a long cylindrical workpiece 
excited by a close-coupled axial coil (figure 1). The problem 
is an axisymmetric heating device. The coil is assimilated 
with a massive conductor. A quarter of the whole domain is 
considered. 

 
The main advantages of the use of the surface impedance 

are: 
• Reduction of the size of the problem domain 
• Reduction of the solution time for the numerical model 

Practically, the whole domain of the problem can be 
decomposed into 2 subdomains: 
• A subdomain Ω1 contains current source (the coil) and 

the air 
• A subdomain Ω2 consists in the workpiece ( a metal 

cylinder)  and source-free 

The solid conductor may be modelled using the Poynting 
vector that replaces the solid conductor. In the figure 2 the 
analysis domain is plotted. 

Numerical algorithms were developed using this concept. 
The first stage of any algorithm involves the evaluation of the 

ohmic losses developed in the conducting part. 
Concerning the target example, a simplified algorithmic 

skeleton consists in the decomposition of the whole domain in 
two disjoint subdomains Ω1 and Ω2 with the following 
properties: 

• A subdomain Ω1 for electromagnetic field analysis 
that does not include the workpiece (replaced by the 
surface impedance);  

• A subdomain Ω2 for the thermal field that include the 
workpiece with the heat generated  by the 
electromagnetic field on the workpiece surface. 

The algorithm consists into 2 stages: 
• Computation of the electromagnetic field in the 

subdomain 1 by replacing the subdomain 2 with a 
surface term 

• Computation of the thermal field consisting of the 
solid conductor only but having a common boundary 
with the first subdomain. 

The boundary condition for the thermal on the common 
boundary is derived from the electromagnetic solution. In this 
algorithm we consider that the heat penetrates the workpiece 
by the outer surface. This assumption is valid at high 
frequency or for the cases where the dept penetration of the 
magnetic field is very small. We can use Poynting vector to 
get real  and reactive  components of power, that is: 

*HERjPS ×=+=  
with H* the conjugate complex of H.  

The power in workpiece is given by P x S , with  S the 
surface area, and P the real part of the Poynting vector. This 
value is used in the computation of the boundary condition for 
the analysis domain. 

 
 
 
 

 
Fig.1.  The whole analysis domain  

 

Fig.2.  The reduced analysis domain  



 

206 

IV. NUMERICAL RESULTS 

The numerical models were obtained by the finite element 
method for axisymmetric fields. For numerical simulation we 
used the program Quickfield  [4].  In our target example we 
considered a workpiece of the metal with the conductivity 
1.107 [S/m].  The frequency was 1 MHz. The copper coil has 
the conductivity of 6.3 107 [S/m]. We made more simulations 
for a frequency range from 1 KHz to 1 MHz. The Figure 3 
shows the current density [A/mm2] in the workpiece along the 
centerline (the axis Or). The depth of penetration is small and 
can vary with the temperature.  

 
RMS power flow through the external axial surface of the 

workpiece (Poynting vector flow) is computed with the 
formula: 

∫= dsnSP ).(  

 
The variation of the vector Poynting to the workpiece 

surface is plotted in the figure 4 and can be used for heating 
computation in the workpiece.  

At a frequency of 1000 Hz the final temperature is shown in 
the figure 5 for a time interval equal to 500 s.  

V. CONCLUSIONS 

In this paper we presented a simplified model for the 
numerical simulation of the induction heating of cylinders in 
large furnaces. The model was based on the concept of the 
surface impedance with direct impact on the computing 
resources.  At high frequency the penetration depth of the 
magnetic field in a metal is very small so that we can 
eliminate the workpiece domain in the magnetic field 
computation. The model is based on the simplifying 
assumption that all the heat entered at the surface. This 
assumption is valid if the frequency is very high for the depth 
of heating to be small compared with the radius of the 
workpiece. The finite depth of penetration changes the 
temperature in the workpiece considerably.  
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Fig.4.  Values of  Poynting vector at workpiece surface  
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Fig.3.  The current density in the workpiece  
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Fig.5.  Final temperature on the external surface (tf=500s)  


