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Typical of the Inverters Transitive Processes 
Hristo P. Hinov1 

 
Abstract – The free oscillations method has been applied to the 

series inverter. The equations have been canonized and the 
inverter parameters have been reduced to two. The inverter 
functions have been stylized. The whole operation process is 
described only by the function of the first half-period, modified 
by the current start point. The dependence between the 
sequential start points has been derived. A recurrent dependence 
has been applied for the formulation of the stationary mode. The 
mode accumulations are presented in a power series. The 
development of the transient process is presented depending on 
the inverter parameters and frequency. The operations have 
been summarized for both elementary and complex inverters. 
Author’s conclusions: The free oscillations method is applicable 
for the mathematical interpretation of the inverter. The first 
half-period, starting from zero initial conditions, is multiplied 
and functionally presents all subsequent half-periods in the 
operation process of the inverter. The start point is the result of 
the completed half-periods and determines the mode level 
(voltage and current) of the current half-period. The position of 
the start point depends on the relationship between the natural 
frequency and the timer frequency. The transient process is 
represented by a fractal (broken line), whose diminishing 
segments are at equal angles. The broken line tends to the start 
point of the stationary mode.  
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I. INTRODUCTION 

The functional presentation of electromagnetic processes 
taking place in inverters is traditionally influenced by the 
concept of forced oscillations [1], [2], [3]. The references 
analyze the inverter reaction under the influence of the square 
pulses from the commutated supply voltage. 

The present article develops the alternative approach, 
according to which the inverter is treated as a freely 
oscillating system within each half-period. The periodic 
commutations in the inverter keep activating the temporary 
solutions to the differential equations, which is the 
mathematical interpretation of free oscillations. 

The aim is to study the transient process and formulate the 
inverter stationary mode. 

Inverters are sources of high-frequency energy and consist 
of controllable electronic switches and an oscillatory system 
(resonant circuits). The switches are usually transistors 
connected in parallel to diodes, which form a four-arm bridge. 
The transistors are controlled by a timer determining the 
generated frequency. The timer closes the switches along one 
bridge diagonal and opens the switches along the other action 
diagonal at intervals Тt /2 – called half-periods /HP/. The of 
the switches causes free oscillations. The free oscillations 

energy is realized in a separate part of the same oscillatory 
system. 
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Fig.1. Object Circuit 

 
Fig.1 presents the object circuit. The oscillatory system Z is 

determined by the number and type of the characteristic 
equation roots. 

If Z is characterized by the only (real) root, then the 
inverter is determined as “elementary”. 

The popular series inverter has a pair of complex conjugate 
roots, but the analysis presented also refers to other 
configurations of Z, in which a complex pair of roots 
dominates. 

The complex inverters, with a lot of root Z, can be 
presented as a combination of the preceding types or their 
processes can be interpreted by means of multidimensional 
matrix operators. 

II. ELECTROMAGNETIC PROCESS IN A SERIES 
INVERTER 

The series inverter is suitable for demonstrating the base 
processes in inverters. Its two-terminal network Z consists of 
a capacitor, inductance and resistor, connected in series.  

A. Equations and parameters 

The differential equation of the series inverter is: 
 

∫ =++ EIdt(1/C)RIL(dI/dt)  
 

The roots of the characteristic equation determine: 
• ω = [(LC)-1 – (R/2L)2]0.5 – natural frequency,  
• ε = (R/2L)/ω ≈ 1/2Q – atténuation. (Q=(L/C)0.5/R) 

A priority of the method applied is the substitution of a 
current angle called “phase” for the current time: θ = ωt. 

The angle-phase symbolizes the current time in the inverter 
in the same way as the clock presents time by means of an 
angle (thirty degrees signify an hour). 
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The phase is a limited argument: 0 ≤ θ ≤ θs. The maximum 
phase, called cycle: θs = π (Тt /Т0), is proportional to the timer 
period Тt, related to the natural period Т0=2π/ω. The cycle   θs 
is the angular route traveled by the “inverter clock hand” Eq. 
1, for the timer interval Тt/2.  

The four circuit parameters (C, L, R and period Тt) have 
been reduced to the two dimensionless quantities – attenuation 
ε and cycle θs. These are the degrees of freedom or the 
inverter coordinates. They are combined in the complex 
parameter: 
 

( ) sθjε +−=p&  (1) 
 

The solutions to the differential equation are presented in 
dimensionless quantities: 

• Capacitor voltage u(θ) = –1 + us exp(-εθ) cos θ , 
Where: u = U/Е, us random starting voltage. 

• Current across inductance i(θ) = is exp(-εθ) sin θ ,  
Where: i = I (L/С)0.5/E, is random starting current. 

B. Dynamics of the primary phase vector 

The last two quantities are presented jointly by a complex 
function, the real part of which is voltage, and the imaginary 
part is the current [4], [5]: 
 

F1(θ) = - 1 + ехр((-ε+j) θ) (2) 
 

This is a rotating vector in a complex plane. It is primary 
because it describes the inverter start from zero initial 
conditions: us=0, is=0. It describes a spiral with center (-1, 0), 
traveling the angular route θs, and completes its half-period 
development in the final point  

F1 = - 1 + ехр( p& ). 
The timer replaces the conduction switches of the bridge in 

the final point, causing the so-called commutation in the 
inverter. The commutation changes the source direction, 
which is manifested by changing the signs in the last equality. 

The second half-period does not start from the zero, but 
from the inverse F1: 
 

S2 = 1 – q&  (3) 
 

Where the complex number q&  = ехр ( p& ) = ехр ((-ε+j) θs), 
is the completed development of the exponential function in 
Eq. 2.  

The described development and final of the first half-period 
deserve special attention, because each subsequent half-period 
reproduces them at a higher mode and energy level.  

C. General form of the phase vector 

The second half-period is presented by a phase vector (PV) 
similar to Eq. 2 but starting from a point, which is the result of 
the first half-period action: 

F2(θ) = - 1 + (1+S2) exp((-ε+j) θ). 

The general form of the phase vector is the generalization 
of the last equality, which is valid for a half-period of an 
arbitrarily high number: 
 

Fn(θ) = – 1 + (1+Sn) exp((-ε+j) θ) (4) 
 
The PV (Eq. 4) can be presented in the form: Fn(θ) = F1(θ) 

+ Sn exp((-ε+j) θ) 
The phase vector of a random half-period in the operation 

process of the series inverter is determined by the primary PV 
ФВ – Eq. 2 and by the start point /SP/ Sn, formed by the 
preceding half-period. 

Fixing the argument in Eq. 4 at its limit θ = θs and 
performing the commutation inversion, the SP of the next 
half-period is obtained. 

The law of the start point’s reproduction is: 
 

S(n+1) = 1 – (1+Sn) q&  (5) 
 

Both the PV and point (Eq. 5) can be presented as the sum 
of the primary SP S1 and the preceding one Sn, reduced by the 
complex q& : S(n+1) = S1 + Sn q&  . 

D. Direct definition of the stationary mode 

Although the stationary mode of the inverter is a product of 
the preceding process, its direct determination is also possible, 
applying important recurrent dependences and properties.  

For example, if the mode reproduction principle is applied 
in stationary mode, then each half-period will repeat the 
preceding one. To achieve such reproducibility it is sufficient 
to equalize two subsequent SP: S(n+1)=S(n) = S. The 
substitution is applied in Eq. 5, which determines the 
stationary mode of the series inverter by means of the start 
point definition: 
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If the substitutions applied in Eq. 3 are used, the hyperbolic 

form of the stationary mode will be obtained: 
 

( )2/pthS && −=  (7) 

E. Accumulations in the transient process 

The different half-periods of the inverter operation are 
determined by there start points Sn. It is the varying parameter 
in Eq. 4, which characterizes the inverter transient process. 
Starting from S1 = 0 and applying Eq. 5, the following start 
points are obtained: 

S2 = 1 - q& ; 
S3 = 1 -2 q& + q& 2; 
S4 = 1-2 q& +2 q& 2- q& 3; 

The following power series is obtained for a half-period 
number of arbitrary magnitude: 
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Sn = 1-2 q& +2 q& 2-2 q& 3+…+ 2(- q& )(n-2) + (- q& )(n-1) (8) 

 
The signs in Eq. 8 are alternative, and the coefficients are 

pairs, except the first and the last term. For each elapsed half-
period the end of the series is complemented by a term of a 
higher power. The coefficient of the last-but-one term is also 
complemented. These are the mode accumulations, which are 
a result of the preceding half-periods. 

The series is complemented to an exact geometric 
progression and allows the application of a limit transition 
when n→∞, which is a second proof of the stationary mode 
law Eq. 6 and respectively – Eq. 7. 

The development of Eq. 8 through the sequential half-
periods provides a good vision for course of the transient 
process. It is expedient to reformulate Eq. 5, so as to 
emphasize the accumulation at the end of the series: S(n+1) = 
S(n) + (1 – q& ) (- q& )(n-1). 

With each subsequent half-period two terms are added to 
Eq. 8, which complement the higher powers of the polynomial 
or series. 

F. Characteristics of the accumulation 

The alternative signs in the polynomial – Eq. 8 are a result 
of the commutation inversion described; however, prior to it 
another transfer has been performed – functional transfer. It is 
expressed in the completed development of the exponential 
function in Eq. 4 or the complex number q&  = ехр ((-ε+j) θs). 
It is not accidental that the inverter cycle is θs= π ± α [5] [6], 
which leads to an encoded minus of q& : 
 

– q& (α) = ехр(-ε(π±α)+j(±α)) = r(α) (9) 
 

The imaginary part of Eq. 9, or the angular route, has a 
reduced argument at the expense of the derived minus. The 
polynomial Eq. 8 is restructured in: 
 

Sn = 1+2r+2r2+2r3+…+ 2r (n-2) + r (n-1) (10) 
 

The imaginary sign alternativeness is eliminated and the 
power series has the form of a normal geometric progression.  

The complex character of Eq. 10 facilitates the visualization 
of the transient process – Fig. 2. The figure presents two open 
polygons, which form a broken line – fractal. The fractal sides 
decrease and are directed to a definite point – the limit. Each 
side is deviated from the preceding one at an angle of 300, 
added in the case of the upper fractal and subtracted for the 
lower one (declination ±α). The angles are the start points of 
the first ten half-periods, starting from S1=0, S2=1+r etc. 
according to Eq. 10. 

The two fractals express the transient processes in two 
inverters having equal attenuation (Q-factor = 3). One of the 
examples is characterized by a half-period angle 

0
s 210απθ =+= – long cycle. The other inverter operates 

with a short cycle 0
s 051απθ =−= . Equal declination is 

chosen for the two examples ±α=300. 

The different cycles of the two examples are obtained from 
the same inverter, but at with different frequency modes. In 
the first example the “long cycle”, timer dictates a frequency 
that is less than the natural frequency, Тt> Т0=2π/ω. In the 
second - short cycle – the other way round, Тt<Т0 , as a result 
of which frequency greater than the natural frequency is 
generated. 

The complex number (Eq. 9) in the long-cycle inverter has 
a positive imaginary part and their power sum (Eq. 10) is in 
the first quadrant. Due to an analogous reason the start point 
of the short-cycle inverter is in the fourth quadrant. This 
difference leads to significant commutation and recuperation 
differences, which are the object of other articles [5] [6]. 

 

 
Fig.2 Start points Fig.3 Transient process 

 
The line segments (corresponding to voltages and currents) 

in the short-cycle inverter (θs=1500) are greater, because it has 
shorter time for realization (absorption) of the energy and it 
increases the accumulations in the reactive elements.  

Fig.3 demonstrates the shell of the transient process typical 
for inverters with low attenuation. The stationary mode is 
reached when the fractal is circumferentially moved closer to 
the limit point, the so-called alternative convergence of Eq. 
10. 

G. Electromagnetic process in an aperiodic inverter  

Inverters, whose oscillatory systems are characterized by 
one real root only, have just one reactive element and develop 
an aperiodic process. 

Their phase vector is determined by a real quantity Eq. 1 
р=–εθs. The power series (Eq. 8) of the transient process and 
its limit (Eq. 6) have the same form, but are real-scalar. They 
can be presented as a separated case of their complex 
analogues.  



224 

H. Electromagnetic process in a complex inverter 

The inverter, whose oscillatory system is characterized by 
several roots, develops a complex oscillatory process. The 
free oscillations are a sum of the elementary oscillations that 
determine their roots. The operations described must be 
interpreted by matrix operators. 

III. CONCLUSIONS 

¾ The free oscillations method is applicable for the 
mathematical interpretation of the inverter. Its application 
allows the formulation of the stationary mode and the 
power of the inverter [4], [5], [6]. 

¾ The first half-period, starting from zero initial conditions, 
is multiplied and functionally determines all subsequent 
half-periods in the inverter operation process. 

¾ The start point is the result of the completed half-periods 
and determines the mode level (voltage and current) of the 
current half-period. 

¾ The position of the start point depends on the relationship 
between the natural frequency and the timer frequency. 

¾ The transient process is represented by a fractila (broken  
line), whose diminishing segments are at equal angles. The 
fractila tends to the start point of the stationary mode. 
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