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Inverter Model and Decomposition in the 3D Space 
Hristo P. Hinov1, Hristo Z. Karailiev2, Valentina V. Rankovska3 

Abstract - The magnetic coupling inverter is a typical object of 
power electronic. The differential equations from the third order 
are canonicated. The residuum’s law has been applied for the 
first time, towards such object like inverter and it has been 
decomposed to its components.  

Keywords – inverter, phase model.   

I. INTRODUCTION 

The generated energy transferring through magnetic 
coupling is an often met approach in power electronics. The 
magnetic coupling is in the base of induction heating, where 
the inductor and the heated metal work as a transformer, 
except as a transformer for galvanic isolation, or for load 
fitting. 

The influence of the magnetic coupling at inverters is often 
ignored [1] with the hypothesis that it does not change the 
oscillating process. The mathematical interpretation shows 
increasing the order of the differential equations and 
processes, typical for the complex inverters. 

The aim of the present analysis is a decomposition of the 
object and the processes in it to their components. The 
analytic methods, connected with the theorem for the 
residuum’s has been applied, and a three-dimensional phase 
space model has been built up.  

II. CIRCUIT, EQUATIONS, SOLUTIONS 

The inverter with magnetic coupling (IM) – Fig. 1, has been 
met both independently and built in more complex structures. 
It consists of two magnetically coupled circles, primary and 
secondary. 
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Fig. 1. Base circuit  
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The differential equations are the following: 
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where the capacitor voltage U and the currents I, H are 
functions of the time t. After dividing by the derivatives and 
applying the substitutions:     

Dispersing
22 1 k−=Σ , connected with the coefficient of 

magnetic coupling
5,0)/(LNMk = ; 

Phase argument tΩ=θ , where
5,0)( −=Ω CL ; 

Fading decrement Ω= /)/( NRε ; 
Dimensionless voltage EUu /= ; 

Dimensionless currents
5,0

11 )/)(/( CLEIi = , 
5,0

22 )/)(/( CNEIi = . 
The argument θ  is limited by the boundaries of the half-

period sθθ ≤≤0 . The boundary is )/( 0TTts =θ , it is 
proportional of the time period Tt, divided by its own 
period ϖπ /20 =T . Then Eq. (1) assumes the following: 
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The characteristic equation is as follows: 
0232 =+++Σ εε ppp   (3) 

The roots of Eq. (3) are divided by their frequencyϖ , 
which means that it is accepted for a conditional unit: 

)](),(),)[(1( ρδδϖ −−−+−= jj . The real constants δ  and 
ρ  express the fading (reduction) for a unit of angle – radian. 

According to the theorem for the residuum’s the solution of 
Eq. (2) is a function of the roots of Eq. (3) and its general 
view is the following: 
     u(θ )=Au exp(-δθ ) cos( αθ + ) + Bu exp(- ρθ ) – 1 

 i1(θ )=Ai1 exp(-δθ ) cos( βθ + ) + Bi1 exp(- ρθ )         (4) 
     i2(θ )=Ai2 exp(-δθ ) cos( γθ + ) + Bi2 exp(- ρθ ) 

The addends or the components can be grouped into two 
vectors: 

а(θ ) = rot(θ ) + ex(θ ) – 1   (5) 
The first vector is rotating and it is called rot-vector. The 

other one represents the movement on a straight line and it is 
called ex-vector. They represent the two types of free 
oscillations (FO): sinusoidal and aperiodic, which exist in the 
inverter. 

By the increasing of the argument the vectors reduce their 
modules and they get near to the point of the steady solution (-
1, 0, 0). Although they develop in the 3D phase space (PS) 
each of the vectors is with lower order. Ex-vector is a segment 
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in the space and it is one-dimensional, rot-vector is a two-
dimensional. 

The structure of Eqs. (4) and (5) presumes that its 
components develop independently from each other. 

III. PHASE MODEL  

The phase model represents the regime parameters – 
currents and voltages, with their dynamics and 
interconnection. It is situated in the 3D PS, marked by a 
coordinate system (u, i1, i2). Eq. (4) describes a phase 
trajectory (PT) when increasing the argumentθ . PT is a space 
line put round rotational body, given in Fig. 2. 

 
 
 
 
 
 
 
 

Fig. 2. Phase model  
 

The body is flattened with less height corresponding to the 
ex-vector and with rounded vertex because of the bigger real 
root. 

The vectors in the PS simultaneously express the regime 
(currents and voltages) and the energy which on the other 
hand is the main reason for the regime dynamics. The regime 
parameters (currents and voltages) are vectors and their 
belonging energy is a scalar. The quadrature of each vector in 
the PS defines a portion of energy [3]. 

Combining the regime and energy presentation defines the 
theorem for their mutual position: 

If two vectors in the PS distribute the energy of a 
third vector – energy carrier, the two vectors are 
cathetuses of the energy-carrier. 

 
(6) 

The three vectors make a right-angled triangle whose 
hypotenuse is the regime energy-carrier. Thus the quadrature 
of the hypotenuse, respectively the carried in energy, is 
distributed as the sum of the quadratures of the cathetuses. 

The vectors (5) submit to the theorem (6), they are cathets 
and they divide the starting energy expressed by the 
hypotenuse – Figs. 2, 3 and 5. 

If the inverter reaction is provoked in relation to its own 
aperiodic oscillation by substitution the current 

)exp(2 ρθ−= Ai and its derivative in Eq. (2), the coordinates 
of the ex-vector ex )]/(,,1[ 2∑ −− ερρ k  are derived. 

The ex-vector coordinates are defined only by the roots and 
the inverter circuit parameters. It defines an unchangeable 
straight line in the PS which is the “staunch” – the axis of the 
PM. It is extremely important that the ex-vector is a normal of 
the plane in which the rot-vector rotates. 

IV. FIRST START 

The first half period starts with the first activating of the 
switches S1 and S3 at zero starting conditions. The first half 

period has prevalent role as is in the development of the 
inverter, because on every next half period it reproduces itself 
on a higher energy level. 

At the start the first equation of (4) is reduced to A+B=1. It 
expresses the distribution of the single x-axis segment 
between the two FO, presented by the vectors rot-vector and 
ex-vector. The single x-axis segment [(0, 0, 0)-(-1, 0, 0)] is the 
distance between the start point and the steady solution point 
of Eq. (4). It matches the voltage of the source E and it is the 
energy carrier which activates the free oscillations in the 
inverter. 

There is a differential connection between the voltage u the 
primary current i1, expressed by the first equation of Eqs. (1) 
and (2). This connection is applied in the second equation of 
(4) and for the start state of the ordinates it is derived: 

0=− BA ρδ . 
The two start equations are added in a system:  

A+B=1          (4s) 
0=− BA ρδ , 

from which the distributing constants of the voltage are 
defined: 

)/( ρδρ +=A ; )/( ρδδ +=B   (7) 
These are the two vectors voltages or their x-axes in the PS, 

depending only on the roots. The second equation in Eq. (4s) 
is about the primary current i1: 

)/()( ρδδρ +== exrot ii           (8) 
It has one and the same start value and different directions 

at the two free oscillations. These currents are balancing and 
their sum expresses the zero starting condition of the start. 

The projection of the ex-vector and the rot-vector in the 
main plane u0i1 are shown in Fig. 3. The projections of the 
two vectors form an obtuse angle faced towards the single x-
axis segment. The x-axis segment, as a base of the projection 
(obtuse) triangle, is divided by its height on the mentioned 
dividing segments A and B. The proportion of their lengths is 
the same as that of the inverter roots: δρ // =BA . 

The currents (8) are the height of the projection (obtuse) 
triangle. If its height is lengthened to the average geometric 
number of the dividing segments: h= (AB) 0,5, it will define the 
whole start triangle of the PS: 

)/()( 5,0 ρδδρ +=h    (9) 
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Fig. 3. Starting triangle  
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It is right-angled because it fulfils the condition of theorem 
(6) and it is in the main plane u0i1, as it is shown in Fig. 3. 
The relation between the height of the start triangle and its 
projection is: 5,0)(/ −= δρih . 

On the other hand the height of the start triangle in the PS is 
the vector sum of the two currents: h2=i1

2+i2
2. The secondary 

current i2 or the z-axis is: 
5,0

1
5,02

2 )1)/1(()/())(( −=+−= δρρδδρδρ ii  (10) 
The representing of the secondary current i2 by the primary 

i1 is possible in induction heating, where the secondary 
current develops in a massive and extremely heated part and it 
has no evident and accessible circuit for the ampere meters. 

The dependence of the processes on the two currents vector 
sum: h2=i1

2+i2
2 shows that the two currents influence on the 

FO as one resultant current. This leads to the conclusion that 
the separate free oscillations structure in their own elementary 
sub-spaces and that they are only included in the multi-
dimensional PS. 

The FO vectors in PS depend only on their roots: 
ex )/(])1)/1((,,[ 5,0 ρδδρδρδρδ +−−−   (11) 

       rot )/(])1)/1((,,[ 5,0 ρδδρδρδρρ +−  
The vector coordinates x -axes (11) are influenced only by 

the distributing segments A and B. The rest of the coordinates 
are equal and balancing each other. They define the vectors in 
a way that except the regime values (voltage and currents) 
their adequate energy is also expressed. 

The moduluses of (11) are the cathets of the single x-axis 
segment [(0,0,0),(-1,0,0)], which as a hypotenuse defines the 
start triangle: 

5,05,02
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)()/()(
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ρδδρρ

ρδδρδ    (12) 

The moduluses (12) can be defined also by the distributing 
angle α  - Fig.5, where: 

ρδα /=tg ; αsin=ex ;    αcos=tro            (13) 

An IM with a couplings coefficient k=0,6 and Q-factor=3 is 
taken as a numeric example, which roots are 08,0=δ  
and 25,0=ρ  [2]. The energy-carrier x-axis is divided between 
the rot-vector A=0,76 and the ex-vector B=0,24. The dividing 
segments A and B express the distribution of the source 
voltage between the two inverter free oscillations. If E=500 V, 
then %7633/25)/( ==+= ρδρA  or 375 V activate the 
harmonic free oscillation, presented by the rot-vector, and the 
other 121 V activate the aperiodic free oscillation, presented 
in the PS by the ex-vector. It is just as if IM combines two 
autonomous inverters: serial inverter sourced with voltage 
E=379 V and aperiodic RC inverter, sourced with E=121 V. 
The primary current i1 on the y-axis is 0,06, and the second i2 
on the z-axis is 0,42. The two currents in the two vectors are 
equal in length and with different signs: 

ex [8,-2,-14]/(33) or [0.24,-0.06,-0.42]; 
rot [25,2,14]/(33) or [0.76,0.06, 0.42]. 

The divisor angle between rot and the x-axis in Eq. (13) 
is °=18α ; then the vector moduluses are: 310,0sin == αxe  

and 951.0cos == αtro . The data is given in Table I. 

TABLE I 
VECTOR DATA 

Distribution ex rot 
Voltage % 24 76 
Relative coordinates 8,-2,-14 25,2,14 
Modulus  % 31 95.1 

V. RELATIVE COORDINATE SYSTEM 

 A relative coordinate system (RCS) is selected, where FT 
is in canonic position as is shown in Fig. 5. The new RCS has 
been got from the old base coordinate system (BCS) by a 
rotation. The rotation orientates the z-axis of the new RCS 
towards its matching with the directress of the ex-vector, 
given in Fig. 4, where the starts of the two coordinate systems 
become common. 

j

i

u

0

-1

ρ((1/δρ)

ρ

ex

 
Fig. 4. Ex-vector in the PS 
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Fig. 5. Third main plane  

 
The x-axis of the BCS is a half-line in the third projection 

plane (x0z) – Fig.5. The steady solution (-1) is on that half-
line, where the center of the PT is, except the basic point 
(0,0,0). The cathets of the start triangle or the vectors of the 
FO are oriented towards the x-axis and the z-axis. 

The vectors of the FO are connected by the energy-carrier – 
the hypotenuse, but they develop in their own independent 
spaces of the RCS. The ex-vector is only on the z-axis and the 
rest coordinate axes are for the rot-vector. It develops only in 
the first main plane x0y. 

Magnifying scales αcos/1  for the x-axis and αsin/1  for 
the y-axis are introduced, so the steady point “-1” in BCS is 
reproduced also in “-1” on the x-axis and on the z-axis. 

VI. DYNAMICS OF THE FIRST PHASE VECTOR  

The development of the processes is expressed by the PV 
dynamics (Eq. 5), which was decomposed to the vectors of the 
two FO and it was structured in the RCS. It begins its 
development during the first half-period, starting from zero 
starting conditions. This “primary” development deserves 
special attention, because in every next half-period it 
reproduces itself on a higher level. 
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The aperiodic FO vector - exθ , forms the z-axis in RCS: 
)exp(1)( ρθθ −+−=z    (14) 

The periodic FO vector, rotating r )(θ  (rot-vector), 
develops in the main plane x0y of the RCS. The vector r )(θ , 
decomposed by the x-axis and the y-axis vectors in a matrix, 
assumes the following: 

( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣
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−
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

θδθ
θδθ

θ
sinexp
cosexp

y

x

r
r

rr   (15) 

The first main plane x0y is express as complex, where Eq. 
(15) assumes the complex view: 

( ) ( )( )θδθ jr +−= exp&                   (16) 
Eq. (5) changes, expressed as a matrix of coordinate 

vectors:  
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The periodic vector complex equation (16) allows reducing 
Eq. (17): 
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The x-axis and the y-axis are expressed by the real and the 
imaginary parts of the complex operator )(θr&  (Eq. 16), and 
the z-axis by the scalar )(θz (Eq. 14). 

The final point of Eq. (!8) is a combinations of the final 
points of Eqs. (16) and (14) at sθθ = : 
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where the complex q’=exp(p’) is the final value of Eq. (16) 
sjp θδ )(' +−= . 

The real q=exp(p) is the final value of Eq. (14) sp ρθ−= . 
The start point (0,0,0) and the final point (19) define the PT 

segment, passed by the primary PV for the half-period interval 
( ))/2/ ωθ stT = . 

The primary PV dynamics finishes with so called 
commutation. The timer activates the inverse bridge switches 
at the final point and it initiates a source direction change, 
represented by a change of the signs in Eq. (19). 

The second half-period starts at point: 
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VII. COMPONENTS OF THE IM (SUB INVERTORS) 

The upper operations have been made simultaneously, but 
they have been separated in two independent “containers”. 

The development of the periodic FO or rot-vector is 
exactly the serial inverter development [3], [4]. The aperiodic 
FO simultaneous development, represented by the ex-vector, 
is a one-dimensional elementary inverter development [5]. 

These are the two sub-inverters – Fig. 6, to which IM is 
decomposed. They develop synchronous, but independently 
from each other. Their common connection is only the 
injected energy at the commutation transition, which they 
distribute each other. The quadratic forms of this distribution 
have been proved. 
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Fig. 6. Sub-inverters  

 
The regime distribution of the source voltage has been 

demonstrated in the example and it has been shown in Fig. 7. 
The serial sub-inverter has got a stationary mode, defined 

by the commutation point: Ss=2,085(26,50)=1,866+j0,93; 
scale Ma=0,5CE2=0,144[J]; power P=14,42 kW at 10 kHz [4]. 
The aperiodic sub-inverter has got a stationary mode, defined 
by the point Sa=0,63/1,37=0,462, that assigns it power P=4,56 
kW. 

VIII. CONCLUSIONS 

1. The theorem of the residuum’s can be applied on the 
power inverters. 

2. The complex inverters can be decomposed on components 
– sub-inverters from first and second order. 

3. The inverter phase model is effective in the three-
dimensional space too. 

4. The free oscillation processes develop in independent 
relative sub-spaces embraced by the three-dimensional 
phase space. 
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