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Abstract−Threshold cryptography makes it possible to design 

cryptographic systems in which some operations require the 
collaboration of several users. As a result, security of the system 
is increased. This paper aims at guiding  readers into this 
interesting field under the asynchronous message-passing model 
of distributed computing.  

Keywords−Threshold cryptosystem, verifiable secret sharing, 
proactive  security, asynchronous system model. 

I. INTRODUCTION 

Distributed cryptography, introduced in 1987, is a variant  
of traditional cryptography intended for distributed services. 
Several  distributed cryptosystems  have been proposed until 
now.  Most of them  have a threshold structure, which means 
that  both the sets of corrupted servers that must be tolerated 
by the system and the sets that are qualified to perform some 
action are determined by their cardinality. Due to this fact, 
distributed cryptography is called also in general threshold 
cryptography. The surveys of threshold cryptography can be 
found in [1,2]. 

Threshold cryptosystem is a public key cryptosystem in 
which the secret key is shared among the set of users. Only 
some qualified subsets of users will be able to perform the 
operation  related to the secret key (decrypting or signing). In 
this way, security of the system is increased, because  the loss 
or theft of several shares of the secret key does not necessarily 
break the system’s security. 
 We are especially interested in protocols that require no 
interaction or synchronization among the servers, and as such 
can be efficiently run on an asynchronous communications 
network where messages are delivered with arbitrary delay 
and in which the speeds of the nodes can get out of 
synchronism to an arbitrary extent. It is the weakest model 
(i.e., methods for this model work in other models, too) and 
the most realistic for distributed computing in today’s large 
scale wide-area networks such  as the Internet. 

II. THRESHOLD CRYPTOSYSTEMS 

A threshold public-key cryptosystem [3] looks similar to an 
ordinary public-key cryptosystem with distributed decryption.  
Given a ciphertext resulting from encrypting  some message 
and more than t+1 valid decryption shares for that ciphertext, 
in a system which tolerates up to t faults, it is easy for a client 
to recover the message; this property is called robustness.  
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This means that corrupted players should not be able to 
prevent uncorrupted servers from decrypting ciphertexts, i.e., 
that the decryption service is available even if the adversary 
can send bad decryption shares. The key to robustness is 
validity checking, based on a public key system, where one 
can ignore all incorrect decryption shares without exhaustive 
searching to find out who sent the wrong decryption share. 
Notice that the message can be recovered without revealing  
the secret decryption key.  

The scheme must also be secure against chosen ciphertext 
attacks [4] in order to be useful for all conceivable  
applications. This type of attack is one in which a cryptanalyst 
attempts to determine the key from knowledge of plaintext 
that corresponds to ciphertext selected (i.e., chosen) by the 
analyst. This type of attack is generally most applicable to 
public-key cryptosystems, for once the (private) key is known, 
all subsequent messages from the same source can be 
deciphered. For the threshold case, security means that the 
adversary cannot obtain any meaningful information from a 
ciphertext unless she  has obtained a corresponding decryption 
share from at least one honest party. 

In a threshold signature scheme, each server  holds a share 
of the secret signing key and may generate shares of 
signatures on individual messages upon request. A signing 
algorithm takes as inputs a message, the public key and the 
secret key share. It outputs a signature share on the submitted 
message. The validity of a signature share can be verified for 
each server by a share verification algorithm. It takes as 
inputs a message, a signature share on that message  from a 
server Si along with the public key and local verification key 
of Si. A share combining algorithm takes as  input  a message 
and  t+1 valid  signature shares on that message, along with  
public keys and the verification keys and outputs a valid  
digital signature on that message without  knowing the actual 
secret signing key. This key speaks for the service  but is 
never materialized at individual servers comprising the 
service. The signature  can later be verified using the single, 
publicly known signature verification key. Notice that in 
particular, the threshold approach rules out the naïve solution 
based on traditional secret sharing, where the secret key is 
shared in a group but reconstructed by a single player each 
time  when a signature is to be produced. Such a protocol 
would contradict the requirement that no t (or less) players 
can ever produce a new valid signature. 

The two basic security requirements are non-forgeability 
and  robustness. 

Non-forgeability property means that t or less corrupted 
servers will not be able to forge signatures, i.e., to provide a 
valid signature on a message for which no honest party 
generated a signature share. 

Robust threshold signature scheme can withstand the 
participation of dishonest signers during the signature 
computation operation. This is a mechanism that succeeds in 
constructing a valid signature even if the partial signatures 
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contributed by some of the signers are incorrect. Due to 
robustness, corrupted servers will not be able to prevent the 
uncorrupted servers from computing correct signatures, i.e., it 
is infeasible for a computational bounded adversary to 
produce  t+1 valid signature shares that cannot be combined 
to a valid signature. 

Threshold-cryptographic protocols ensure security  as long 
as  at most t of servers are broken into. They enhance the 
security against  break-in attacks in many scenarios. However, 
threshold cryptography is also limited. Given sufficient 
amount of time, an attacker can break into servers one by one, 
thus eventually compromise the security of the system. This 
danger is particularly eminent in systems that must remain 
secure for long periods of time (such as certification 
authorities) or where secure recovery may be difficult (such as 
with secure communication). 

Proactive security is a mechanism for protecting against 
such long-term attacks. Proactive cryptosystems operate in 
phases. They can tolerate the corruption of up to t different 
servers in every phase [5]. That is, first distribute the 
cryptographic capabilities among several servers. Next, have 
the servers periodically engage in a refreshment protocol that 
proactively reboots all servers at the beginning of every phase 
and subsequently refreshes the secret key shares. Knowledge 
of the shares from the previous phases becomes useless to 
attack the system in the future. This protocol will allow the 
servers to automatically recover from possible, undetected 
break-ins, and in particular will provide the servers with new 
shares of the sensitive data while keeping the sensitive data 
unmodified.  

Share refreshing is a distributed protocol and in all 
proactive cryptosystems it relies on verifiable secret sharing. 
Verifiable secret sharing is a fundamental primitive in 
distributed cryptography [6] that has found its application in 
threshold cryptosystems. A verifiable secret sharing protocol 
allows each shareholder  to verify that the share is consistent 
with other shares in case the dealer of shares  might be faulty. 

III. CRYPTOGRAPHY VERSUS DISTRIBUTED 
COMPUTING 

The field of multi-party cryptographic protocols is where 
cryptography and distributing computing meet [7]. However, 
this field  is considered as a part of cryptography, which is the 
consequence of the dominant role of cryptographic notions 
and techniques in the current research of cryptographic 
protocols. Most of the cryptographic research is concerned 
with two-party computations where typically an asynchronous 
message passing model is assumed (almost always implicitly). 
For multi-party cryptographic protocols  a  synchronous 
model consisting of either point-to-point channels or a single 
broadcast channel is used most frequently. Results for 
asynchronous communication and arbitrary networks of point-
to-point channels were presented in [8,9,10].   

IV. RELATED WORK 

A major complication for adopting threshold cryptography 
to asynchronous distributed systems is that many early 

protocols are not robust and that rely heavily on synchronous 
broadcast channels.  

Shoup and Gennaro [4] present the first robust threshold  
cryptosystem that is also  non-interactive, and as such 
integrates well into asynchronous communication model.  
Moreover, it  is  the first practical threshold cryptosystem that 
is provably secure against chosen ciphertext attack in the 
random oracle model. In the random oracle model  
cryptographic hash functions are replaced by a random oracle. 
This model was used informally by Fiat and Shamir [11] and 
later was rigorously formalized and more fully exploited in 
Bellare and Rogaway [12]. In the random oracle model the 
proof of security is viewed as “strong evidence“ that the 
scheme is actually secure in the “real world“. Authors 
presented and analyzed two schemes, which are based on the  
hardness of the Diffie-Hellman problem. 

The threshold RSA signature scheme of  Shoup [13]  is 
unforgeable and robust in the random oracle model, assuming 
the RSA problem is hard. Signature share generation and 
verification is completely non-interactive.  

First implementations of threshold signatures in 
asynchronous networks without random oracles are RSA 
signature schemes by Gennaro, Halevi and Rabin [14] and by 
Cramer and Shoup [15], which are based on strong RSA 
assumption. 

The first practical verifiable secret sharing protocol for 
asynchronous networks together with a proactive refresh 
protocol is proposed by Cachin et al. [16]. The authors 
propose a model of asynchronous proactive network that 
extends an asynchronous network by an abstract timer that is 
accessible to every server. The timer defines the phase of a 
server locally. They assume that the adversary corrupts up to  
t different servers who are in the same local phase. 
Uncorrupted servers who are  in the same local phase use 
private authenticated channels for communication. Message 
delay  in such a channel must be no longer than the local 
phase lasts. Otherwise  the message is lost. A proactive 
cryptosystem refreshes the shares of the secret key at the 
beginning of every phase. The liveness of the cryptosystem is 
based on the assumption that the adversary delays  messages 
of the refresh protocol for no longer than the phase lasts. 
Otherwise  the secret key may become inaccessible. This 
assumption seems reasonable because a phase typically lasts 
much longer than  the maximal delay of a message in the real-
world network. The proactive refresh protocol relies on a 
discrete logarithm-based verifiable secret sharing that is 
similar to Pedersen’s scheme [17]. The servers exchange two 
asynchronous rounds of messages to reach agreement on the 
success of the sharing. Agreement is achieved by using a 
randomized asynchronous multi-valued Byzantine agreement 
primitive [18]. Cachin et al. [16] left open the question of how 
proactive secure message transmission could be implemented. 

A protocol for proactive secure message transmission over 
an asynchronous network is presented in [19]. The authors 
specify proactive secure message transmission  in terms of an 
idealized service that has simple deterministic semantics and 
hides cryptographic objects from  its interfaces. Additionally, 
a real implementation is proposed and proved to be  at least as 
secure as the ideal service. The solution relies on a hardware 



 21

assumption, i.e., a secure co-processor that cannot be 
corrupted by the adversary.  

The first  purely asynchronous group key exchange 
protocol that tolerates a minority of servers to crash is 
presented in [20]. A group of servers communicate over an 
asynchronous network to establish a common session key 
such that anyone outside the group that can only observe  the 
network traffic cannot learn this key. Such a key can later be 
used to achieve multicast message confidentiality or data 
integrity. The protocol consists of the following two stages. In 
the first stage, the group members exchange keying 
information using two communication rounds. In the second 
stage, they execute consensus protocol to select the 
contributions  from the first stage where  the session key is 
computed. The protocol may use randomized asynchronous 
consensus  in the fully asynchronous model or a consensus 
protocol in the asynchronous model augmented with a failure 
detector. It is shown that any group exchange protocol among 
n servers that tolerates t>0 servers to crash can only provide 
forward secrecy  if the adversary occupies less than n-2t 
servers and  the presented protocol  achieves this bound. 

CODEX (COrnell Data Exchange)[21] is a distributed 
service for storage and dissemination of secret keys that uses 
an approach to building distributed services that are both 
fault-tolerant and attack tolerant. This approach includes  
asynchronous model of execution, which makes the system 
resistant to denial of service attacks. Byzantine quorum 
systems  are used  for storing the state, ensuring consistency 
among the servers, and proactive secret sharing with threshold 
cryptography implement confidentiality and authentication of 
service responses.  

The storage and transmission of data files in distributed 
systems gives rise to significant security and reliability 
problems.  Information dispersal algorithms store files by 
distributing them among a set of servers in a storage efficient 
way. The authors in [22] introduce the problem of verifiable 
information dispersal in an asynchronous network, where up 
to one third of servers as well as an arbitrary number of clients 
might  have Byzantine faults. Consistency of the stored 
information is ensured by verifiability. The secrecy of the 
stored data  is guaranteed  with respect to an adversary that 
may mount adaptive attacks. 

V. FUTURE RESEARCH 

The authors in [23] describe some research subjects that are 
important in the future development of distributed 
cryptography. For instance, there exist many situations in 
which general structures instead of threshold structures are 
required. Moreover, it is necessary to find new public key 
cryptosystems for non-threshold structures. The design of 
distributed cryptosystems with non-threshold access structure 
is closely related to the problem of performing multiparty 
computation on general access structures. The main question 
is how to find efficient linear secret sharing schemes with the 
multiplicative property and very little is known about that. 

 

VI. CONCLUSION 

We have presented main results in the field of threshold 
cryptography under the asynchronous model of distributed 
computing. We started with fundamental definitions, then 
pointed out the meeting place of cryptography  and distributed 
computing, and finally presented several solutions with 
concluding remarks concerning future research. 
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