

19

Threshold Cryptosystems in Asynchronous Networks
Aleksandra Sešić1, Veljko Malbaša2

Abstract−Threshold cryptography makes it possible to design

cryptographic systems in which some operations require the
collaboration of several users. As a result, security of the system
is increased. This paper aims at guiding readers into this
interesting field under the asynchronous message-passing model
of distributed computing.

Keywords−Threshold cryptosystem, verifiable secret sharing,
proactive security, asynchronous system model.

I. INTRODUCTION

Distributed cryptography, introduced in 1987, is a variant
of traditional cryptography intended for distributed services.
Several distributed cryptosystems have been proposed until
now. Most of them have a threshold structure, which means
that both the sets of corrupted servers that must be tolerated
by the system and the sets that are qualified to perform some
action are determined by their cardinality. Due to this fact,
distributed cryptography is called also in general threshold
cryptography. The surveys of threshold cryptography can be
found in [1,2].

Threshold cryptosystem is a public key cryptosystem in
which the secret key is shared among the set of users. Only
some qualified subsets of users will be able to perform the
operation related to the secret key (decrypting or signing). In
this way, security of the system is increased, because the loss
or theft of several shares of the secret key does not necessarily
break the system’s security.
 We are especially interested in protocols that require no
interaction or synchronization among the servers, and as such
can be efficiently run on an asynchronous communications
network where messages are delivered with arbitrary delay
and in which the speeds of the nodes can get out of
synchronism to an arbitrary extent. It is the weakest model
(i.e., methods for this model work in other models, too) and
the most realistic for distributed computing in today’s large
scale wide-area networks such as the Internet.

II. THRESHOLD CRYPTOSYSTEMS

A threshold public-key cryptosystem [3] looks similar to an
ordinary public-key cryptosystem with distributed decryption.
Given a ciphertext resulting from encrypting some message
and more than t+1 valid decryption shares for that ciphertext,
in a system which tolerates up to t faults, it is easy for a client
to recover the message; this property is called robustness.

1 Aleksandra Sešić is with Nopal, 21400 Bačka Palanka, Serbia and
Montenegro, Email: asesic@nopal.co.yu
2 Veljko Malbaša is with the School of Engineering, University of
Novi Sad, 21000 Novi Sad, Serbia and Montenegro, Email:
malbasa@uns.ns.ac.yu

This means that corrupted players should not be able to
prevent uncorrupted servers from decrypting ciphertexts, i.e.,
that the decryption service is available even if the adversary
can send bad decryption shares. The key to robustness is
validity checking, based on a public key system, where one
can ignore all incorrect decryption shares without exhaustive
searching to find out who sent the wrong decryption share.
Notice that the message can be recovered without revealing
the secret decryption key.

The scheme must also be secure against chosen ciphertext
attacks [4] in order to be useful for all conceivable
applications. This type of attack is one in which a cryptanalyst
attempts to determine the key from knowledge of plaintext
that corresponds to ciphertext selected (i.e., chosen) by the
analyst. This type of attack is generally most applicable to
public-key cryptosystems, for once the (private) key is known,
all subsequent messages from the same source can be
deciphered. For the threshold case, security means that the
adversary cannot obtain any meaningful information from a
ciphertext unless she has obtained a corresponding decryption
share from at least one honest party.

In a threshold signature scheme, each server holds a share
of the secret signing key and may generate shares of
signatures on individual messages upon request. A signing
algorithm takes as inputs a message, the public key and the
secret key share. It outputs a signature share on the submitted
message. The validity of a signature share can be verified for
each server by a share verification algorithm. It takes as
inputs a message, a signature share on that message from a
server Si along with the public key and local verification key
of Si. A share combining algorithm takes as input a message
and t+1 valid signature shares on that message, along with
public keys and the verification keys and outputs a valid
digital signature on that message without knowing the actual
secret signing key. This key speaks for the service but is
never materialized at individual servers comprising the
service. The signature can later be verified using the single,
publicly known signature verification key. Notice that in
particular, the threshold approach rules out the naïve solution
based on traditional secret sharing, where the secret key is
shared in a group but reconstructed by a single player each
time when a signature is to be produced. Such a protocol
would contradict the requirement that no t (or less) players
can ever produce a new valid signature.

The two basic security requirements are non-forgeability
and robustness.

Non-forgeability property means that t or less corrupted
servers will not be able to forge signatures, i.e., to provide a
valid signature on a message for which no honest party
generated a signature share.

Robust threshold signature scheme can withstand the
participation of dishonest signers during the signature
computation operation. This is a mechanism that succeeds in
constructing a valid signature even if the partial signatures

 20

contributed by some of the signers are incorrect. Due to
robustness, corrupted servers will not be able to prevent the
uncorrupted servers from computing correct signatures, i.e., it
is infeasible for a computational bounded adversary to
produce t+1 valid signature shares that cannot be combined
to a valid signature.

Threshold-cryptographic protocols ensure security as long
as at most t of servers are broken into. They enhance the
security against break-in attacks in many scenarios. However,
threshold cryptography is also limited. Given sufficient
amount of time, an attacker can break into servers one by one,
thus eventually compromise the security of the system. This
danger is particularly eminent in systems that must remain
secure for long periods of time (such as certification
authorities) or where secure recovery may be difficult (such as
with secure communication).

Proactive security is a mechanism for protecting against
such long-term attacks. Proactive cryptosystems operate in
phases. They can tolerate the corruption of up to t different
servers in every phase [5]. That is, first distribute the
cryptographic capabilities among several servers. Next, have
the servers periodically engage in a refreshment protocol that
proactively reboots all servers at the beginning of every phase
and subsequently refreshes the secret key shares. Knowledge
of the shares from the previous phases becomes useless to
attack the system in the future. This protocol will allow the
servers to automatically recover from possible, undetected
break-ins, and in particular will provide the servers with new
shares of the sensitive data while keeping the sensitive data
unmodified.

Share refreshing is a distributed protocol and in all
proactive cryptosystems it relies on verifiable secret sharing.
Verifiable secret sharing is a fundamental primitive in
distributed cryptography [6] that has found its application in
threshold cryptosystems. A verifiable secret sharing protocol
allows each shareholder to verify that the share is consistent
with other shares in case the dealer of shares might be faulty.

III. CRYPTOGRAPHY VERSUS DISTRIBUTED
COMPUTING

The field of multi-party cryptographic protocols is where
cryptography and distributing computing meet [7]. However,
this field is considered as a part of cryptography, which is the
consequence of the dominant role of cryptographic notions
and techniques in the current research of cryptographic
protocols. Most of the cryptographic research is concerned
with two-party computations where typically an asynchronous
message passing model is assumed (almost always implicitly).
For multi-party cryptographic protocols a synchronous
model consisting of either point-to-point channels or a single
broadcast channel is used most frequently. Results for
asynchronous communication and arbitrary networks of point-
to-point channels were presented in [8,9,10].

IV. RELATED WORK

A major complication for adopting threshold cryptography
to asynchronous distributed systems is that many early

protocols are not robust and that rely heavily on synchronous
broadcast channels.

Shoup and Gennaro [4] present the first robust threshold
cryptosystem that is also non-interactive, and as such
integrates well into asynchronous communication model.
Moreover, it is the first practical threshold cryptosystem that
is provably secure against chosen ciphertext attack in the
random oracle model. In the random oracle model
cryptographic hash functions are replaced by a random oracle.
This model was used informally by Fiat and Shamir [11] and
later was rigorously formalized and more fully exploited in
Bellare and Rogaway [12]. In the random oracle model the
proof of security is viewed as “strong evidence“ that the
scheme is actually secure in the “real world“. Authors
presented and analyzed two schemes, which are based on the
hardness of the Diffie-Hellman problem.

The threshold RSA signature scheme of Shoup [13] is
unforgeable and robust in the random oracle model, assuming
the RSA problem is hard. Signature share generation and
verification is completely non-interactive.

First implementations of threshold signatures in
asynchronous networks without random oracles are RSA
signature schemes by Gennaro, Halevi and Rabin [14] and by
Cramer and Shoup [15], which are based on strong RSA
assumption.

The first practical verifiable secret sharing protocol for
asynchronous networks together with a proactive refresh
protocol is proposed by Cachin et al. [16]. The authors
propose a model of asynchronous proactive network that
extends an asynchronous network by an abstract timer that is
accessible to every server. The timer defines the phase of a
server locally. They assume that the adversary corrupts up to
t different servers who are in the same local phase.
Uncorrupted servers who are in the same local phase use
private authenticated channels for communication. Message
delay in such a channel must be no longer than the local
phase lasts. Otherwise the message is lost. A proactive
cryptosystem refreshes the shares of the secret key at the
beginning of every phase. The liveness of the cryptosystem is
based on the assumption that the adversary delays messages
of the refresh protocol for no longer than the phase lasts.
Otherwise the secret key may become inaccessible. This
assumption seems reasonable because a phase typically lasts
much longer than the maximal delay of a message in the real-
world network. The proactive refresh protocol relies on a
discrete logarithm-based verifiable secret sharing that is
similar to Pedersen’s scheme [17]. The servers exchange two
asynchronous rounds of messages to reach agreement on the
success of the sharing. Agreement is achieved by using a
randomized asynchronous multi-valued Byzantine agreement
primitive [18]. Cachin et al. [16] left open the question of how
proactive secure message transmission could be implemented.

A protocol for proactive secure message transmission over
an asynchronous network is presented in [19]. The authors
specify proactive secure message transmission in terms of an
idealized service that has simple deterministic semantics and
hides cryptographic objects from its interfaces. Additionally,
a real implementation is proposed and proved to be at least as
secure as the ideal service. The solution relies on a hardware

 21

assumption, i.e., a secure co-processor that cannot be
corrupted by the adversary.

The first purely asynchronous group key exchange
protocol that tolerates a minority of servers to crash is
presented in [20]. A group of servers communicate over an
asynchronous network to establish a common session key
such that anyone outside the group that can only observe the
network traffic cannot learn this key. Such a key can later be
used to achieve multicast message confidentiality or data
integrity. The protocol consists of the following two stages. In
the first stage, the group members exchange keying
information using two communication rounds. In the second
stage, they execute consensus protocol to select the
contributions from the first stage where the session key is
computed. The protocol may use randomized asynchronous
consensus in the fully asynchronous model or a consensus
protocol in the asynchronous model augmented with a failure
detector. It is shown that any group exchange protocol among
n servers that tolerates t>0 servers to crash can only provide
forward secrecy if the adversary occupies less than n-2t
servers and the presented protocol achieves this bound.

CODEX (COrnell Data Exchange)[21] is a distributed
service for storage and dissemination of secret keys that uses
an approach to building distributed services that are both
fault-tolerant and attack tolerant. This approach includes
asynchronous model of execution, which makes the system
resistant to denial of service attacks. Byzantine quorum
systems are used for storing the state, ensuring consistency
among the servers, and proactive secret sharing with threshold
cryptography implement confidentiality and authentication of
service responses.

The storage and transmission of data files in distributed
systems gives rise to significant security and reliability
problems. Information dispersal algorithms store files by
distributing them among a set of servers in a storage efficient
way. The authors in [22] introduce the problem of verifiable
information dispersal in an asynchronous network, where up
to one third of servers as well as an arbitrary number of clients
might have Byzantine faults. Consistency of the stored
information is ensured by verifiability. The secrecy of the
stored data is guaranteed with respect to an adversary that
may mount adaptive attacks.

V. FUTURE RESEARCH

The authors in [23] describe some research subjects that are
important in the future development of distributed
cryptography. For instance, there exist many situations in
which general structures instead of threshold structures are
required. Moreover, it is necessary to find new public key
cryptosystems for non-threshold structures. The design of
distributed cryptosystems with non-threshold access structure
is closely related to the problem of performing multiparty
computation on general access structures. The main question
is how to find efficient linear secret sharing schemes with the
multiplicative property and very little is known about that.

VI. CONCLUSION

We have presented main results in the field of threshold
cryptography under the asynchronous model of distributed
computing. We started with fundamental definitions, then
pointed out the meeting place of cryptography and distributed
computing, and finally presented several solutions with
concluding remarks concerning future research.

REFERENCES

[1] Y. Desmedt, “Threshold cryptography,” European Trans. on
Telecommunicatons, 5(4), pp. 449-457, July-August 1994,
(Invited paper).

[2] Y. Desmedt, “Some Recent Research Aspects of Threshold
Cryptography,” In Eiji Okamoto, George Davida, and Mashiro
Mambo, editors, Information Security, The 1st International
Workshop, ISW’97, Tatsunokuchi, Ishikawa Japan, September
17-19, 1997.

[3] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” In G.
Brassard, editor, Proc. CRYPTO 89, pages 307-315. Springer-
Verlag, 1990, Lecture Notes in Computer Science No. 435.

[4] V. Shoup and R. Gennaro, “Securing threshold cryptosystem
against chosen ciphertext attack,” Proc. EURO-CRYPT ’98,
LNCS 1403, 1998.

[5] R. Canneti, R. Gennaro, A.Herzberg, and D. Naor, “Proactive
security: Long-term protection against break-ins,“ RSA
Laboratories’ CryptoBytes, vol. 3, no.1, 1997.

[6] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch,
“Verifiable secret sharing and achieving simultaneity in the
presence of faults,” Proc. 26th IEEE Symp. on Found. of
Computer Science, pages 383-395, 1985.

[7] O. Goldreich, “Cryptography and Cryptographic Protocols,”
Distributed Computing, v.16, n.2-3, p.177-199, September 2003.

[8] M. Ben-Or, R. Canetti and O. Goldreich, “Asynchronous Secure
Computation,” 25th ACM Symposium on the Theory of
Computing, pages 52-61, 1993.

[9] M. Ben-Or, B. Kelmer and T. Rabin, “Asynchronous Secure
Computations with Optimal Resilience,” 13th ACM Symposium
on Principles of Distributed Computing, pages 183-192, 1994.

[10] D. Dolev, C. Dwork, O. Waarts, and M. Yung, ”Perfectly
secure message transmission,” Journal of the ACM, Vol. 40(1),
pages 17-47, 1993.

[11] A. Fiat and A. Shamir, “How to prove yourself: practical
solutions to identification and signature problems“, Advances in
Cryptology-Crypto ’86, Springer LNCS 263, pages 186-194,
1987.

[12] M. Bellare and P. Rogaway, “Random oracles are practical: a
paradigm for designing efficient protocols“, First ACM
Conference on Computer and Communications Security, pages
62-73,1993.

[13] V. Shoup, “Practical threshold signatures,” Proc. EURO-
CRYPT 2000, LNCS 1087, pp.207-220, 2000.

[14] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-sign
signatures without the random oracle,” Proc. EUROCRYPT ’99,
pp. 123-139, Springer, 1999.

[15] R. Cramer and V. Shoup, “Signature schemes based on the
strong RSA problem,” ACM Transactions on Information and
System Security, vol. 3, no. 3, pp. 161-185, 2000.

[16] C. Cashin, K. Kursawe, A. Lysyanskaya, and R. Strobl,
“Asynchronous Verifiable Secret Sharing and Proactive
Cryptosystems,” Proc. 9th ACM Conference on Computer and
Communications Security (CCS), pages 88-97, 2002.

 22

[17] T. P. Pedersen, “Non-interactive and information-theoretic
secure verifiable secret sharing,” In J. Feigenbaum, editor,
CRYPTO ’91, volume 576 of LNCS, pages 129-140, Springer,
1992.

[18] C. Cashin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” Advances in
Cryptology-Crypto 2001, 2001.

[19] M. Backes, C. Cashin, and R. Strobl, “Proactive Secure
Message Transmission in Asynchronous Networks,” Proc. 22nd
ACM Symposium on Principles of Distributed Computing
(PODC 2003), pages 223-232, July 2003.

[20] C. Cashin, and R. Strobl “Asynchronous Group Key Exchange
with Failures,” Proc. 23rd ACM Symposium on Principles of

Distributed Computing (PODC 2004), pages 357-366, July
2004.

[21] M. A. March, F. B. Schneider, “CODEX: A Robust and Secure
Secret Distribution System,” IEEE Transactions on Dependable
and Secure Computing, January-March 2004 (Vol.1, No.1) pp.
34-47.

[22] C. Cashin, S. Tessaro, “Asynchronous Verifiable Information
Dispersal,” Research Report RZ 3569, IBM Research, December
2004.

[23] Research Group on Mathematics Applied to Cryptography,
“Some trends for future research in distributed cryptography,”
Stork Cryptography Workshop: Towards a Roadmap for Future
Research, November 26-27, 2002.

