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Short Cycle Inverter 
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Abstract - The paper determines the dependence between 

inverter frequency and cycle. It formulates the stationary mode 
based on the symmetry at the bridge circuit. The phase model 
has been built and the inverter characteristics, recuperation and 
control have been proved. A relation has been formulated 
between the inverter mode and energy. A map has been drawn 
out, covering the mode and power of all short cycle inverters. 
The following conclusions have been drawn: The stationary 
mode in the case of bridge inverters can be formulated as an 
effect of functional symmetry; The transistor is only activated 
after the current in the diode on the same bridge arm has been 
reduced to zero; The diode is switched on when the transistor on 
the adjacent arm of the bridge is deactivated (switched off); The 
inverter is only controlled by the trailing edges of the gate pulses; 
The diodes of short cycle inverters perform a typical 
recuperative process; Soft commutation is practically impossible; 
The inverter power depends only on the voltage of the start 
commutation point. 
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I. INTRODUCTION 

The series inverter /SI/ is a source of high-frequency energy 
and a fundamental object of research in power electronics [1]. 
The inverter forms its operation cycle within the timer half-
period Тt /2.The object of the present article is the SI which 
generates frequency higher than its own, as a result of which it 
develops a shortened operation cycle. 

The aim is to formulate the stationary mode, which, in 
addition to voltages and currents, should cover the inverter 
power. 

The phase analysis method is used for this purpose, and its 
basic postulates are applied to the SI [2]. The applications 
there refer to inverters which operate at a frequency lower 
than their own and develop a lengthened operation cycle   
(θS= π + α). 

The present article is an expansion of [2] into a mode area, 
where the object has different properties. 

A series bridge inverter with reverse diodes /SI/ is shown in 
Fig. 1. Normally the switches are transistors controlled by a 
timer, which determines the generated frequency. The timer 
closes the switches along one of the bridge diagonals and 
opens the switches along the other diagonal at intervals Тt /2 – 
half-periods that determine the generated frequency. This 

causes a periodical change in the direction of source E relative 
to the resonant CLR circuit and free oscillations, which are the 
object of the present article.  
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Fig.1. Series inverter circuit 

II. EQUATION AND PARAMETERS  

The differential equation of the inverter is: 
L(dI/dt) + RI + (1/C)∫Idt =E 

The roots of the characteristic equation determine: 
• Natural frequency:   ω = [(LC)-1 – (R/2L)2]0.5  
• Attenuation:  ε = (R/2L)/ω = 1/2Q  

A priority of the method applied is the replacement of the 
current time by a current angle called “phase”:  θ = ω t. 

Just like the clock represents time by means of an angle 
(thirty degrees mean an hour), in the same way the phase 
angle represents the current time in the inverter. 

The phase is a limited argument:  0 ≤ θ ≤ θS. The maximum 
phase, called cycle: θS = π (Тt /Т0), is proportional to the timer 
period Тt , relative to the own period Т0=2π/ω. The cycle θS is 
the angular path traveled by the “inverter clock hand” over the 
timer interval Тt /2   or   θS < π , (θS= π - α).  

The four circuit parameters (C, L, R and period Тt) have 
been reduced to just the two dimensionless quantities – 
attenuation ε and cycle θS. These are the degrees of freedom 
or inverter coordinates. They are combined in a single 
complex parameter: 

р = (-ε+j) θS  (1) 
The solutions to the differential equation are represented in 

dimensionless quantities: 
• Capacitor voltage: 

u(θ) = -1 + uS exp(-εθ) cos θ  
where: u = U/Е,  uS arbitrary start voltage. 

• Current across inductance: 
i(θ) = iS exp(-εθ) sin θ  

where: i = I(L/С)0.5/E,  iS arbitrary start current. 
The two mode quantities are represented together by a 

single complex quantity, the real part of which is the voltage, 
and the imaginary one is the current [3]. 
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F(θ) = - 1 + (1+ Sn) exp((-ε+j) θ)  (2) 
The start significations  uS  and  iS  correspond to a zero 

phase  θ = 0  and refer to a random number (n) of the half-
period  F(0) = Sn. The start complex point is  

Sn = (uS+j iS) 
Both the combination of voltage and current, and their 

equivalent complex form Eq. (2) define the phase vector /PV/. 
It reduces its module when the phase θ increases and tends to 
reach the “stable” point  u(∞) = -1,   i(∞) = 0. 

When in the complex plane, the PV rotates and, although its 
hand gets shorter, it represents the “inverter clock”. The peak 
of the PV describes a spiral, which starts from the starts point 
Sn and tends to the stable point (-1,j0). 

The spiral segment in inverters has a cycle of about 1800,  
θS = π ± α, which, substituted in Eq. (2) determines the final 
point of the half-period:  

F(θS) = - 1 + (1+ Sn) exp(р)  (3) 
When in the final point Eq. (3), the timer activates the 

inverse switches of the bridge and causes the so-called 
commutation in the inverter. The commutation causes a 
change in the direction of the source, which can be expressed 
by a change in the signs of Eq. (3), therefore the next half-
period starts from the point: 

Sn+1 = 1 - (1+ Sn) exp(р) (4) 

III. STATIONARY MODE 

In the stationary mode each of the following half-period 
reproduces the preceding one, which only requires the 
reproduction of the start point: 

Sn+1 =  Sn = S 
The reproduction principle applied in Eq. (4) determines the 

start commutation point describing the inverter stationary 
mode: 

S =(1-ехр(р))/(1+ехр(р)) (5) 
The point and the mode depend only on the two inverter 

coordinates, attenuation ε and phase θS.  The start point can 
also be represented in a hyperbolic form: 

S =  th (-p/2) (6) 
 
The interpretation of the general dependences under the 

condition of a short cycle θS = π - α  specifies (1): 
p = -exp(-ε(π – α)) exp(-j α) (1.1) 

The substitution of Eq. (1.1) in Eq. (5) or Eq. (6) 
determines the position of S, similar to p, in the fourth 
quadrant, in the case of negative voltage and negative current.  

The start of the phase trajectory is related to the 
commutation in the inverter or the replacement of the bridge 
arms. The above-mentioned negative current before the start 
commutation point can only be the current of the inverse 
transistor, and immediately after the commutation the 
negative current can only be transferred into the reverse diode. 
Hence the commutation in a short cycle inverter is connected 
to the deactivation (switching off) of the transistor and the 
transfer of current in the diode of the bridge adjacent arm. The 
commutation is an effect of the trailing edge of the gate pulse. 

The relationships proved above form a complete 
mathematical model of the inverter stationary mode. 

IV. PHASE MODEL 

The geometric interpretation of the mathematical 
dependences is the phase model /PM/, which visualizes the 
dynamics and the relationships in the inverter.  

The phase trajectory /PT/ of odd-numbered half-periods is 
described by the vector Eq. (2), which is centered on the 
abscissa in point -1. The vector starts in point S and, rotating 
counter-clockwise, completes the upper spiral segment in 
point –S. 

The PT or the spiral of even-numbered half-periods is an 
inverse repetition of the preceding one:  F(θS+θ) = - F(θ). The 
spiral of even-numbered half-periods intersects the first closed 
curve, broken in commutation, in points S and –S .  

The commutation is reflected by the PM as a change in the 
vector center.  

Fig. 2 presents an example referring to inverters with 
Q-factor = 2.5 and cycle   θS = 2.5 (1430), which corresponds 
to frequency relation   Тt /Т0 = 0.8. 

The ordinate of the rotating vector represents the current 
and its function can be traced from the right-hand intersection 
point with the abscissa. The transistor current there is zero and 
increases in the first quadrant. After its maximum  im= 2.15, 
with phase θim= 800, the current is completed in point – S with 
coordinates: voltage uS = -1.65 and current   iS = 1.85.  The 
transistorized segment has a duration of θt = 1100. The 
transistor is switched off in commutation point – S and the 
current is taken over by the diode in the bridge inverse wing. 

 

 
Fig.2. Phase model 

 
The diode segment is positioned in the second quadrant and 

continues θd = 330  (θS= θt+ θd).  The diode segment θd is 
determined relative to the inverse center +1. 

The inverse diode is switched off when the current is 
reduced to zero. 
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The diode segment reduces the current to zero, with a steep 
drop to the abscissa, accompanied by an insignificant rise in 
voltage. It can be concluded that the inverse diode performs 
recuperation, transferring the reactor energy mainly to the 
source, a process typical for the object.  

The connection to the inverse transistor is performed when 
the current is zero and the development of the odd-numbered 
half-period repeats the processes described above.  

This connection does not change the conductivity of the 
bridge arm; like in the case of a regular conductor the current 
has changed its direction.  

The soft commutation of the transistor requires the leading 
edge of its gate pulse to be passed in advance to an arbitrary 
point in the previous diode interval. The exact choice of the 
moment of the gate leading edge is insignificant, because the 
voltage is zero and the transistor has to wait until the moment 
the diode is switched off. This gives ground for the following 
conclusions:  

• The transistor is only activated after the current in the 
diode on the same bridge arm is reduced to zero. 

• The diode is switched on when a transistor on the bridge 
adjacent arm is deactivated (switched off). 

• Short cycle inverters are only controlled by the trailing 
edges of the gate pulses. 

• The gate pulses must have greater duration than that of 
the transistor current. 

The duration of the gate pulses is limited between the 
transistor interval and the cycle:  θt < θg< θS. Although the 
gate pulse can last as long as cycle θS, the stationary mode 
automatically shortens the transistor interval to θt, at the 
expense of the recuperation diode interval θd. 

The rhomboid with vertexes in the start commutation points 
S, –S and in the centers (1,0), (-1,0), has the angles of the 
inverter cycle θS= π – α. More precisely, θS is the angle at the 
centers, while α is the angle at S. As the cycle θS increases, its 
complainer α decreases and the rhomboid tends to a position 
on the abscissa. This process is described in the following 
parts of the article. 

V. STATIONARY MODE MAP 

The start point S on the spiral identifies the entire stationary 
mode. In addition to its function for constructing the PM, it 
illustrates the inverter power. S is the radius of circles, which 
are used to determine the maximum voltage, maximum 
current, and a number of other parameters.  

The set formed by all start points is the mode map, which 
illustrates the properties of all inverters of this type – Fig. 3. 

Inverters in power electronics have the typical 
significations:  2≤ Q ≤5  (Q-factor = (L/C)0.5/R)  and cycle  
1.5 ≤ θS ≤ 3.1 , which, when applied to Eq. (5) or Eq. (6) 
determine the start point S.  

The mode map is a net of two arc families. The lengthened 
arcs have a fixed Q-factor and are the frequency 
characteristics of the inverter. The approximation of cycle θS 
to π (α > 0) increases the power in the second abscissa scale. It 
is essential to maintain the distance to this limit θS ≠ π  
(Тt<Т0), otherwise there is a risk of short circuit across the 
transistors.The vertical arcs have a fixed cycle θS. These arcs 
are the inverter load characteristics, since the varying Q 
represents the changes in the load.  

The mode amplitude is typical for both the great values of 
Q, and the great values of θS, where the timer frequency 
approaches the inverter natural frequency. The map can be 
used for design and optimization of the series inverter, as well 
as for other applications. 

VI. ENERGY AND POWER 

Power is a priority in power electronics, since the efficiency 
and productivity of various devices is based on it. 
Conventional methods reach the power required by means of 
time-consuming procedures connected with working out 
equations, solutions, stylization of the solutions, such as 
average or quadratic mean current, etc. These procedures are 

Fig.3 Stationary mode map 
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additionally complicated with inverters due to their discrete-
switch principle of operation. 

For direct determination of the inverter power we use the 
quadratic relationship between mode levels and energy levels 
in the PM – Fig. 2. If the capacitor of an arbitrary inverter is 
charged up to the source voltage E, then its energy is:  

Ма = 0.5СЕ2  [J] (7) 
Then the abscissa unit - (1,0) in Fig.2, will present 

simultaneously the voltage Е of the capacitor and the energy 
portion Eq. (7) in it. 

The same is proved for the ordinate unit (0,1) of the PM, 
which presents the base portion of energy Eq. (7) 
simultaneously with the current.  

The base portion of energy Eq. (7) is the energy scale of the 
inverter. 

In addition to the mode significance (voltage and current) 
of its coordinates (u, i), any point of the PM, also presents the 
sum of their coordinates energies. 

А = (u2+i2)*Ma   [J] (8) 
The mode quadratures between the parentheses in Eq. (8) 

are the quadratures of the radius vector, which summarizes the 
remarkable relation between the mode and the energy: 

Any vector in the PM represents energy that is 
proportional to its module quadratures. 

The energy which is realized in resistance R of the inverter 
is illustrated by the difference between the modules of the 
start vector and the final vector. These vectors intersect in 
start point S – Fig.2. They are the equal sides of an isosceles 
triangle, the base of which is is the abscissa segment between 
spiral centers –1 and +1. 

The quadratures of the difference in the sides is easy to 
determine using the coordinates of the start point S (uS, iS):   

a/2 = [(uS+1)2  + iS
2] – [(uS-1) 

2  +  iS
2] 

The equality shows the energy realized for a half-period. 
Although it presents a quadratures, its relatively simple 
transformation eliminates the coordinate quadratures. The 
energy for a full period is: 

а = 8 uS  (9) 
The active energy in the inverter depends only on the start 

point voltage. This allows the mode map in Fig. 3 to be 
supplemented with a second abscissa scale, along which the 
active energy can be reported directly. 

The inverter power is the product of the multiplication of 
Eq. (9) by the scale Eq. (7) and by the frequency - f = 1/Тt: 

Р = f  а  Ма     [W] (10) 

VII. CONCLUSIONS 

The stationary mode in bridge inverters can be formulated 
as an effect of the functional symmetry. 

The transistor is only activated after the current in the diode 
on the same bridge arm is reduced to zero. 

The diode is switched on when a transistor on the bridge 
adjacent arm is deactivated (switched off).  

The inverter is only controlled by the trailing edges of the 
gate pulses. 

The diodes perform a recuperative process. 
Soft commutation is practically impossible. 
The inverter power depends only on the voltage at the start 

point. 
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