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Low Sensitivity Design of IIR Filters Obtained as a Tapped 
Cascaded Interconnection of Identical Allpass Subfilters 

Valentina I. Anzova1, Kamelia S. Ivanova2, Georgi K. Stoyanov3 

Abstract – In this paper an improved method of design of low 
sensitivity multiplierless IIR digital filter is proposed. First a tap-
ped cascaded interconnection of identical allpass subfilters is 
designed and then first- and second-order allpass sections with 
minimized sensitivities are introduced, which is improving 
considerably the filter behavior in a limited wordlength environ-
ment. The method is verified experimentally. 

Keywords – IIR digital filters, allpass filters, low sensitivity, 
multiplierless 

I. INTRODUCTION 
The number of the structures for realization of recursive 

digital filters, developed in the last 40 years, appeared to be 
very high. Most of these structures, however, are having only 
a textbook value, because when realized in a limited 
wordlength environment, they behave badly and their 
magnitude characteristics can not meet even some simple 
specifications. One of the best known realizations is build as a 
parallel connection of allpass structures [1]. Even though 
having extremely low sensitivity in the passband (PB) this 
realization creates problems in the stopband (SB) and in order 
to keep the SB attenuation within given limits, it is necessary 
to work with very high wordlength. A very interesting way to 
solve this problem was developed in [2], where some 
additional tap coefficients have been introduced in the parallel 
structure and then it was decomposed to a cascade of identical 
substructures. Another way to improve the SB behavior of the 
parallel allpass structure was advanced in [3] and it was based 
on the sensitivity minimization of the allpass sections used. 

The main aim of this paper is to apply this approach to the 
structure from [2]. And if it works, to investigate the possi-
bilities to obtain a multiplierless realizations without using 
some complicated optimization procedures, in order to avoid 
the degradation of the shape of the filter magnitude, as it was 
done in [4]. 

II. DESIGN METHOD DESCRIPTION 
In this section we shall introduce briefly the method of Sa-

ramaki and Renfors [2]. It starts with a tapped parallel allpass 
structure, as shown in Fig. 1a, where )(zA  and )(zB  are all 
pass filters, usually realized as cascades of first- and second-
order allpass sections. 
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Fig. 1 Initial tapped cascaded interconnection of identical 

allpass subfilters structure (a); final structure (b) 
The overall transfer function of this structure is [2]: 
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The specifications for the overall filter are formulated as  
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where the PB regions pX  and SB regions sX  may consist of 
several bands. 

The design of the overall filter )(zH  can be separated into 
two parts – the design of a prototype nonlinear phase FIR 
filter )(~ zH , containing the additional tap coefficients )(nh  
and the design of an elliptic filter )(zF , determining the two 
allpass sections. 

)(zF  is an IIR filter implemented as a parallel connection 
of two allpass filters. The amplitude response of the elliptic 
filter  
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where )(ωϕB  and )(ωϕ A  are the phase responses of the 
allpass filters )(zA  and )(zB . 

The frequency response of the overall filter can be obtained 
from the frequency response of the prototype filter as it is 
described in [2]. The frequency transformation 

 )()( ωϕωϕ AB −=Ω , (5) 

converts PB and SB performance of a prototype nonlinear 
phase FIR into that of overall filter: 
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Both lowpass nonlinear phase FIR filter and allpass 
subfilters meet following specifications: 
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where  

 ).2/cos(ˆ),2/cos(1ˆ
sspp Ω=Ω−= δδ  (9) 

The optimal allpass sections can be found by designing a 
minimum odd order lowpass elliptic filter which meets the 
requirements of Eq. (8). This filter is implemented as a sum of 
two allpass sections )(zA  and )(zB  whose orders differ by 
one. The Herrmann – Schüssler technique (see [2][5] for 
details) is used for designing the nonlinear phase FIR filter 
meeting Eq. (7). 

III. ALLPASS FILTER STRUCTURES 
It is well known that digital filters realized as a parallel 

connection of two allpass structures have an extremely low 
passband sensitivity and low roundoff noise. But in order to 
have only real coefficients, the transfer function (3) must be 
only of odd-order, when it is lowpass or highpass. The allpass 
branches )(zA  and )(zB  are usually realized as a cascade 
connection of first and second order sections. In [2][5] these 
sections are realized using the well known wave lattice 
structures (Fig. 2a and Fig. 3a), often called Gray-Markel 
(GM)- sections [6]. The transfer functions of these sections 
are: 
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The GM-sections are really famous and posses indisputable 
merits, but our observations show that they behave badly 
when realizing poles near z=1. It was shown in [3] that much 
better for realization of such poles are the section ST1 [7] 
(Fig. 2b) and LS2 [3] (Fig. 3b). The transfer functions of these 
sections are given by: 
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Fig. 2 First-order allpass sections 
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Fig. 3 Second-order allpass sections 

We have investigated the sensitivities of the GM1, GM2, 
ST1 and LS2 for the transfer function coefficient values as 
given in Table II corresponding to poles very near z=1 (a 
narrow-band LP filter). The results for the worst-case sensi-
tivities vs. frequency are given in Figs. 4 and 5. It is clearly 
seen that the low-sensitivity sections ST1 and LS2 are having 
many times lower sensitivities for all frequencies, but the 
difference is especially strong at the maximal points. It is 
expected that after using the low-sensitivity sections, it will be 
possible generally to shorten the filter coefficients wordlength 
and, in our case, to introduce handy multiplierless 
representations of these coefficients without causing some 
unacceptable degradation of the magnitude shape.  

 
Fig. 4 Worst-case sensitivities of the first-order allpass sections 

with coefficients a and b as given in Table II 
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Fig. 5 Worst-case sensitivities of the second-order allpass sections 

with coefficients ai and ci as given in Table II 

IV. EXPERIMENTS AND COMPARISONS 
In this experiment a lowpass IIR filter with PB edge 

sradp /05.0 πω =  and SB edge srads /12.0 πω =  is 
considered. The maximum ripple in PB is 0009.0=pδ  and in 
SB – 000009.0=sδ . For elliptic filter realized as a parallel 
connection of two allpass sections, the filter order 9 is 
estimated. 

If the number of subfilters K  in structure shown in Fig. 1 
is 4, then the estimated order of an elliptic subfilter )(zF  is 3. 
Therefore, the order of )(zA  is two, and the order of )(zB  is 
one. 

The magnitude of the prototype FIR filter obtained using 
the method described in [5], is shown in Fig. 6. The best 
extraripple prototype filter solution meeting the specifications 
in Eq. 7 has PB and SB frequencies sradp /14.0 π=Ω  and 

srads /9835.0 π=Ω . In this case, the required ripples for the 

elliptic subfilter are 024.0ˆ =pδ  and 0258.0ˆ =sδ . The proto-

type filter transfer function )(~ zH  can be factored into one 
second order section and two first order sections (Fig. 1b). 
Table I presents received tap coefficients.  

 

Fig. 6 The prototype FIR filter 

 

TABLE I 
QUANTIZED TAP COEFFICIENTS 

First order sections 
 )0(kc  )1(kc  

First 
section 

843 222 −−− ++  843 222 −−− ++  
Second 
section 1 8542 2222 −−−− −−−−  

Second order sections 
)0(kb  )1(kb  )2(kb  First 

section 1 91 22 −−  1 
 
In this paper, different low-sensitivity structures are used 

for implementation of elliptic subfilter )(zF . First, the low-
sensitivity sections LS2 and ST1 are used for design of the 
allpass filters )(zA  and )(zB . Then, for comparison, the 
filters )(zA  and )(zB  are designed with GM-sections. Fig. 7 
gives the amplitude responses of the elliptic subfilter )(zF  
realized with LS2 and ST1 ( )(zFLS ), and by wave lattice 
sections ( )(zFGM ). Because of the extremely low 
sensitivities of the sections LS2 and ST1 to the multiplier 
coefficients variation, the elliptic subfilter )(zFLS  realization 
magnitude does not differ from the ideal after the coefficients 
are quantized with 8 bits. Fig. 8 gives the optimal amplitude 
response of the overall filter and PB and SB details. It is clear 
from this figure that filter implemented with subfilters 

)(zFLS  meets filter specification in Eq. 2 without general 
multipliers better than filter realized with subfilters )(zFGM . 
All the coefficient values in Table II are representable as a 
sum of powers of two. 

TABLE II 
QUANTIZED COEFFICIENTS FOR ALLPASS SUBFILTERS 

 Low sensitivity  Wave lattice 
a  63 22 −− +  b  630 222 −− −−  

1c  62−  1a  730 222 −− −+−  

2c  63 22 −− −  2a  750 222 −− +−  
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Fig. 7 The amplitude response - solid line; )(zFLS  - dashed line 

and and )(zFGM  – dotted line a) overall filter )(zF  
b) passband details 
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c) 

Fig. 8 The amplitude response: a) the overall original IIR filter - 
solid line; quantized filter with )(zFLS  subfilters - dashed line and 

quantized filter with )(zFGM  subfilters – dotted line b). Passband 
details c). Stopband details 

V. CONCLUSION 
A substantial improvement of the method of Saramaki and 

Renfors for design of recursive digital filters was achieved in 
this paper by introduction of an additional step in the design 
procedure. It was shown that the sensitivity of the stopband 
attenuation can be considerably reduced if the allpass sections 
used in the subfilters are with minimized sensitivities for the 
stopband frequency range. As a result, it becomes possible to 
reduce the coefficient wordlength or to simplify the multi-
plierless representation of these coefficients without destroy-
ing the magnitude shape. Shorter coefficients means, on the 
other hand, lower power consumption, which is very impor-
tant for portable telecommunication equipment realizations. 
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