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Convergence Analysis of an LMS Adaptive Low 
Sensitivity Biquadratic Digital Filter Section 

Maria Nenova1, Georgi Iliev2, Georgi Stoyanov3
 

Abstract – This paper presents a mean convergence analysis of 
a low sensitivity biquadratic filter section transformed into 
adaptive by using an LMS algorithm. The structure allows 
independent tuning of the central frequency and the bandwidth 
of the bandpass/bandstop realizations. The mean convergence 
analysis of the adaptation process is then presented. All results 
received for theoretical bounds are also verified experimentally. 
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I. INTRODUCTION 

Over the years, a variety of IIR structures for adaptive 
digital filters have been investigated and implemented [1], [2], 
[3]. Many of them are second-order sections [2], but they are 
not useful for a realization in the low frequency band, because 
of their high sensitivity. A biquadratic section (called BQ3) is 
investigated thoroughly in [4], [5] and in [4] BQ3 is improved 
so that the section is very efficient for applications in the low 
frequency band, resulting from its considerably low sensitivity 
of the poles near z=1. An important feature when designing 
second-order section is that they should employ a canonic 
number of multipliers (two in BQ3) in contrast to the 
structures investigated in [6]. This second-order section is also 
implemented here because it allows independent tuning of the 
central frequency and the bandwidth of bandbasss/bandstop 
realizations.   

Initially, the adaptive algorithms were of Gauss-Newton’s 
type or its simplifications [1], [6], [7]. Most of them include 
modifications of the gradient oriented algorithms as in [3]. 
Moreover in [7] it is shown that a significant number of those 
algorithms have a high computational complexity and slow 
convergence. In [8] a modification of the least-squares 
algorithm is proposed, avoiding matrix inversion and having 
very fast convergence. 

In this paper the BQ3 section is first transformed into 
adaptive by incorporating an LMS adaptive algorithm. This 
algorithm is one of the widely used in the adaptive signal 
processing,because of  its low computational complexity. 

Then mean convergence analysis, similar to the one in 
Ref.[1] is performed. 
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Finally some experiments are conducted to verify the 
theoretical results. 

II. DESIGN METHOD DESCRIPTION 

The biquadratic section BQ3, given in Fig.1 was proposed 
in [4],[5], it is realizing (at different outputs) 
bandpass/bandstop transfer functions and it was shown that it 
has extremely low sensitivities for pole near z=1.  
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Fig. 1 Biquadratic section BQ3 with its BP and BS outputs 

The transfer functions at the BP and BS output of the 
structure are [5]: 

 ,
)21()4242(1

)1()( 21

2

−−

−

−+−++−+
−

=
zdzcddc

zdzH BP  (1) 

 .
)21()4242(1

])21(21)[1()( 21

21

−−

−−

−+−++−+
+−−−

=
zdzcddc

zzcdzH BS  (2) 

Their bandwidth BW:  
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is depending only on d, so it can be controlled and tuned 
independently. 

The central frequency depends generally on the coefficients 
c and d, but once the BW is tuned and d – fixed, this 
frequency can easily be tuned by changing c. 

When the BS output is used: 

 )21(cos 1 cz −= −θ  (4) 
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III. LMS ADAPTIVE ALGORITHM 

Usually when a BS filter is used for adaptive tracking of a 
narrow band signal. The BW is fixed to some given value and 
thus only the center frequency becomes a subject of 
adaptation. It is seen from (4) that in BQ3 it could easily be 
performed by changing c. If the adaptation is done according 
to the Least Mean Squares algorithm, the updated value of c 
will be calculated as: 

 ).()()()1( ngnencnc µ−=+  (5) 
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Fig.2 An adaptive IIR notch filter 

The adaptive notch filter configuration and the whole 
structure are shown in Fig.2. 

In equation (5) g(n) is the gradient function of e(n) with 
respect to the coefficient c. If e(i) represents the error signal at 
the BS output on Fig.1 and x(i) is the input signal, we can 
easily obtain from Eq.(2) the following difference equation: 
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Hence the signal g(n) in function of c is: 
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IV. MEAN CONVERGENCE  

Let’s assume that the input signal consists of an unknown 
sinusoid and a noise. The noise is white Gaussian with zero-
mean  

 )()cos()( 0 iviAix ++= θω , (8) 

where A represents the sinusoid amplitude, θ is the initial 
phase, ω0 is the angular frequency and v(i) is the noise. The 
frequency of the input sinusoid is estimated by searching the 
optimum coefficient c for which the adaptation error is 
minimal.  

Investigations are based on the assumption of the local 
linearization [9] of the gradient function about the point where 

the function is stationary, the error surface is flat in areas far 
from the minimum and is steepest near the stationary point  It 
gives us a possibility to constrain stability bounds for µ 
around the area of the optimal solution.  

The signals e(i) and g(i)can be expressed not only with a 
difference equations, but also as: 
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Here )( 0ωj
g eH   is the gradient transfer function and 

)( 0ωj
N eH is the notch transfer function. 

Because of the linearization about the stationary point it can 
be presumed that near this point the notch transfer function is 
a linear function of c. Therefore the gradient function is 
constant  
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Hence the denominator D(z) can be approximated to: 

 ).1()( 020 ωω jj edeD −−≈  (12) 

Substituting (11) and (12) into the expression for the bandpass 
transfer function and the gradient transfer functions result in:  
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For simplification we use the following notation for the 
common term of (13) and (14): 
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The exact value of the adaptive coefficient c is: 

 ,*cc += δ  (16) 

where δ represents the deviation from the optimal solution c*. 
For further simplification we introduce: 

 ).( 00 ωϕθωγ ++= ii  (17) 

into (9) and (10) and, having in mind (11) – ( 14)finally get: 
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 ),()cos()()( 1
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 ).()cos()( 2 ivABig i +≈ γ  (19) 

V. MEAN CONVERGENCE ANALYSIS  

Using the expression for the adaptive algorithm in (5) and 
(16) *)()( cici −=δ  we derive the update of the adaptive 
coefficient c :  
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In order to perform the mean analysis we introduce some 
additional, simplifications similar to those in [1]. The sinusoid 
phase θ is assumed to be uniformly distributed in [-π, π] and 
the white Gaussian noise has a variance σ2

n. We have assumed 
that there is approximately no correlation between cos(γi) and 
v1(i), as well as between cos(γi) and v2(i). Consequently, the 
correlation between cos(γi) and δ(i) and between v1(i) and v2(i) 
is zero, because they are uncorrelated.  

Using this assumptions for the mathematical expectation of 
δ(i) the expression (20) becomes:  
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If we neglect the term not containing δ(i) we finally get: 
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If the algorithm is to be stable it is required that : 
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We have chosen a stricter criterion for µ than what is taken 
in[1], as seen from (21). Solving the expression (23) with 
respect to µ we will obtain: 
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The step size depends on the sinusoid amplitude and on d 
which is responsible for the pole radius.  

This expression shows how to control the upper bound of 
the step size µ and the dependence of µ on the sinusoid 
amplitude and the pole radius expressed by:  
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VI. SIMULATION RESULTS 

The simulation are made for the signal-to-noise ratio 
SNR=20dB and SNR=10dB. For SNR=20dB, the amplitude 
of the input sinusoid is unity and the noise variance 2

nσ  is 
0.1. The step size µ and coefficient d are varied in order to 
investigate the adaptation process for different values. 
Experiments are performed with fs=8 kHz.  

The adaptation process of the LMS algorithm in (5) to 
sinusoid with frequency 200Hz, for different bandwidths is 
illustrated in Fig. 3.  

 
Fig. 3 Adaptation with different bandwidths for frequency of 

200Hz 

From the learning curves it can be concluded that the 
greater the pole radius/BW is, the faster the adaptation speed 
is.  

 
Fig.4 Investigation of tracking of different frequencies with 

SNR=10dB  

It is seen that the best result is achieved for the lowest 
frequency, which is due to the implemented structure features.   

The theoretical bounds for the step size µ for different pole 
radii are compared graphically with the experimental bounds 
for a sinusoidal signal with a frequency of 200Hz in Fig.5: 
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Fig.5 Theoretical and experimental stability bounds for f=200Hz  

It is also seen that the experimentally obtained bound is 
staying constant for all values of r. 

 Fig.6 presents the analytical and theoretical bounds for µ 
for two different SNR’s. 

 
Fig.6 Investigation of theoretical and experimental bounds for 

different SNRs  

We can conclude from this figure that the step sizes of µ are 
approximately equal for the two values of SNR. 

VII. CONCLUSIONS 

A new biquadratc filter section with independent tunning of 
the central frequency and the bandwidth was turned to 

adaptive with an LMS algorithm for adaptation of the central 
frequency. 

Then the mean convergence of the notch filter so obtained 
was investigated and the bounds for the adaptation step size 
have been defined. A number of simplifications have been 
performed and the theoretical results for the step size bounds 
have been confirmed. A mean square convergence analysis 
still remains to be done. 
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