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Abstract - In this paper, we present a comparative study of 
different denoising techniques applied to functional magnetic 
resonance imaging (fMRI) sequences. The performance of these 
techniques was investigated using a simulated fMRI time series 
data with noise levels. The performance of these techniques was 
evaluated with respect to two quantitative measures; signal-to-
noise ration (SNR), and shape preservation. As a result of the 
comparative study it has been found that denoising using 
Wavelet transform with reverse biorthogonal basis functions 
provides the best performance among all denoising techniques. 

Keywords - Functional Magnetic Resonance Imaging (fMRI), 
Signal-to-Noise-Ratio (SNR), Hemodynamic Response Function 
(HRF), and Statistical Parametric Mapping (SPM) 

I. INTRODUCTION 

Functional neuroimages often need preprocessing before 
being subjected to statistical analysis [1]. A common 
preprocessing step is denoising. In this paper we study 
different fMRI temporal denoising techniques. The 
performance of these techniques is compared with respect to 
(i) the improvement of the SNR, and (ii) the shape 
preservation of active region. 

The remainder of this paper is organized as follows: 
Section-II presents an overview of fMRI imaging techniques; 
Section-III presents modeling of fMRI data, Section-IV a 
discussion of the performance evaluation criteria. 
Classification of different denoising techniques was presented 
in Section-V. Section-VI presents time domain denoising 
techniques. Section-VII provides transformed domain 
techniques. In Sections IIX and IX the results and conclusions 
were presented, respectively. 

II. OVERVIEW OF FMRI  

Functional neuro-imaging is a fast evolving area aimed at 
measuring brain activity during task performance [2]. FMRI is 
the most recently developed modality, which distinguishes 
itself from earlier methods (e.g. PET, SPECT, etc.) in that no 
exposure to ionizing radiation is evolved, better spatial and 
temporal resolution is achieved, and a relatively 
straightforward co-registration to anatomical MRIs acquired 
on the same machine can be attained. 
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The main problem associated with fMRI techniques is the 
poor signal-to-noise ratio (SNR), where the intensity of the 
detected MRI signal is mainly dependent on the applied static 
field, (e.g. the maximum signal change is 5% for T5.1B0 = ). 
Therefore, a preprocessing step for noise reduction is 
necessary, in order to improve the SNR.  

In general, fMRI time-courses can be modeled as the 
summation of the activation signal, physiologic and random 
noise components [3, 4]. Let us assume the observed signal 
( )kx , the activation signal ( )ks , and the composite noise 
( )kn , representing all types of artifacts, then 

)k(n)k(s)k(x +=                                 (1) 

III. MODELING FMRI DATA 

Simulating a set of fMRI time series representing the brain 
function under both resting and activated states would cover, 
in general, both temporal and spatial variations in time 
courses, in this work only temporal variations are considered 
[3, 4]. 

A. Modeling the HRF 

HRF refers to the local changes in blood oxygenation as an 
effect of increased neuronal activity [4, 5]. The HRF to a 
sensory input is transient, delayed and dispersed in time. Fig.1 
shows the simulated HRF of the from  
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where T1 and T2 are constants that can be adjusted to obtain 
the desired shape, and k represents the sampling time (i.e. the 
number of samples within each epoch). In the described 
simulation 0.5T1 =  and 5.7T2 = . 

B. Physiologic Noise 

Physiologic noise is composed of respiration, a signal of 
high amplitude and long duration, and cardiac pulsation; a 
signal of low amplitude and short duration [3]. This noise type 
was simulated as a periodic signal consisting of two 
fundamental frequencies, Hz1  and Hz 2.0 , and the first three 
harmonics superimposed on a small dc as shown in Fig.2. The 
choice of these frequencies is based on a heart rate of 

beats/min, 60  and respiration rate of n.breaths/mi 12  
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C. Random Noise 

Random noise introduced to fMRI due to imaging system 
itself, subject motion, etc. Random noise was simulated using 
random number generator, shown in Fig.3.  

D. Composite Noise  

During the measurement of real fMRI signals all types of 
MRI artifacts simultaneously corrupt the measured signal. 
Therefore, the composite noise is the summation of scaled 
versions of all previously simulated artifacts [2]. Fig.4 shows 
a simulated HRF corrupted with composite noise. 

IV. THE PERFORMANCE EVALUATION CRITERIA 

The performance of all the denoising techniques was 
evaluated using two different quantitative measures. These 
measures are shortly described below. 

 
Fig.1 The simulated HRF for 8 epochs each has 64 samples. 

 
Fig.2 Simulated physiologic noise for 8 epochs each has 64 samples. 

 
Fig.3 Simulated random noise for 8 epochs each has 64 samples. 

 
Fig.4 Simulated random noise for 8 epochs each has 64 samples. 

A. Signal-to-Noise-Ratio (SNR) 

SNR is an important quantitative measure for evaluating the 
performance of the applied technique. In which, SNR is 
computed and compared before and after denoising [1]. In this 
article the SNR is defined as 
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B. Shape Preservation 

This parameter may be estimated using the correlation 
coefficient (R) between the original x and output y signals [1, 
6]: 
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V. DENOISING TECHNIQUES 

Denoising techniques can be classified into temporal and 
transformed techniques. Here, two temporal denoising 
techniques will be discussed; (i) linear, and (ii) nonlinear. On 
the other hand, in transformed domain (i) frequency domain, 
and (ii) wavelet domain techniques, will be discussed. 

VI. TEMPORAL DENOISING TECHNIQUES 

A. Linear Filters 

Linear filters tend to destroy oscillations and other fine 
details, and perform poorly in the presence of signal 
dependent noise, physiologic noise [7, 8]. 

1. Mean Filters 

The mean techniques is a simple, intuitive and easy to 
implement method of smoothing data, i.e. reducing the 
amount of intensity variation between one sample and its 
neighbors [7]. 
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2. Gaussian Filters 

The Gaussian smoothing operator is a convolutional 
operator, similar to the mean filter [7], but it uses different 
weights representing the shape of a Gaussian distribution  
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where σ  is the standard deviation, and m is the mean value.  

3. Wiener Filter 

Wiener filter is the solution of the linear minimum squared 
error problem of estimating a signal s , from a measured 
signal x using a filter, ( )kh . It can be shown easily that the 
frequency response of the non-causal Wiener filter is 
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where ( )wPS and ( )wPn represent the power spectral density of 
the original signal and noise, respectively. Intuitively, the 
action of Eq.6 is to keep frequency bands where the signal 
power is much stronger that that of the noise and to severely 
attenuate frequencies where noise predominates. A natural 
extension of the Wiener filter is to allow it to be time-varying. 
In principle, this should only require substituting the signal 
and noise power spectral densities with their time-dependent 
counterparts [5]. 

4. Coherent Average 

Coherent average (CA) assumes that a series of M  
equidistant and identical stimuli are applied to the system, and 
the following assumptions were satisfied [9]; (i) The response 
( )ks  will be complete before the next stimulus occurs, and 

invariant with time, (ii) The delay time between stimulus and 
the start of the response is constant, and (iii) The noise ( )kn  
has the properties; additive, uncorrelated with either the 
stimulus or the response, stationary. The CA signal ( )ky  
follows from 
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5. Robust Weighted Average (RWA) 

In case non-stationary artifacts, it is better to use an 
adaptive weighted average filter; called robust weighted 
average. RWA should have a set of properties given by Huber 
et al in [10]. Here, the main problem is the estimation of the 
noise power spectrum, in order to evaluate the adaptive 
weight. The weighted average is given by 
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where iw is the weight matrix. 

B. Non-Linear Filters 

In non-linear filters, noise is removed without any attempt 
to identify it [7, 8], where, the filters employ a low pass filter 
on groups of samples with the assumption that the noise 
occupies the high frequency spectrum. 

1. Median Filters 

Median filter often does a better job than the mean filter of 
preserving useful detail in the data. Like the mean filter, the 
median filter considers each sample in the data in turn and 
looks at its nearby neighbors to decide whether or not it is 
representative of its surroundings [8]. 

2. Weighted Median (WM) Filters 

Weighted median filters can be defined in two distinct 
ways; however both definitions give exactly the same output 
[11]. WM filters are special case of weighted ordered statistic 
filters. There are two familiar weighted median techniques; 
positive integer weights and positive non-integer weights [11]. 
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VII. TRANSFORMED DOMAIN TECHNIQUES 

A. Frequency Domain Techniques 

 In frequency smoothing methods the removal of noise is 
achieved by designing a frequency domain filter. These 
methods are time consuming and depend mainly on the filter 
characteristics [8]. 

1. Spectrum Subtraction (SS) 

The spectral subtraction provides an estimate of the signal 
spectrum as the difference between the noisy spectrum and an 
estimate of the noise spectrum [12]. The corresponding power 
spectra would therefore related by 

)w(P)w(P)w(P NXS −=                          (10) 

where ( )wSP and ( )wPX  are the power spectra of the original 
and measured pixel time-course, respectively. The power 
spectrum of the noise, ( )wPN , can be estimated from 
locations where the deterministic signal is absent. Here, the 
amplitude square of the Fourier transform is used as the 
periodgram estimate of the power spectrum. Spectrum 
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subtraction may result in negative estimated of the power 
spectrum, in which case they would have to be mapped to 
non-negative values, here mapped to zero. The estimate 
Fourier transform of the recovered signal, in terms of power 
and phase, is given by 

( )wj
s Xe.)w(P)w(Y θ=                         (11) 

Finally, the signal )k(y  can be obtained by taking the inverse 
FFT of the Fourier transform of Eq.11. 

B. Wavelet Domain Filters 

Wavelet bases are bases of nested function spaces, which 
can be used to analyze signals at multiple scales. Wavelet 
coefficients carry both time and frequency information, as the 
basis functions varies in position and scale. The wavelet 
transform efficiently converts a signal to its wavelet 
representations; in one level a signal x is splitted into an 
approximate part 1cx and a detail part 1dx [7, 8, and 13]. In 
multilevel decomposition, only the approximate part is further 
decomposed.  

1. Thresholding Wavelet Coefficients 

The wavelab package contains  a number of schemes for 
the wavelet-based denoising [14], based on thresholding detail 
coefficients in the wavelet domain. There are two main 
thresholding techniques; (i) soft thresholding, and (ii) hard 
thresholding [15]. 

2. Wavelet Packet Transform 

Wavelet packets (WP) are waveforms indexed by three 
naturally interpreted parameters: position, scale, and 
frequency [16] for a given orthogonal wavelet function, a 
library of bases called wavelet packet bases were generated. 
The decomposition parameters of a given dataset are chosen 
based on an entropy-based criterion. The main difference 
between wavelet transform and WP is that, in WP both 
approximate and detail coefficients are decomposed, instead 
of approximate coefficients in the case of wavelet transform. 

3. Smoothing Wavelet Coefficients 

Major interests of the recent papers on the noise reduction 
using wavelet transform are the determination of the wavelet 
transform and the choice of thresholding parameters [16]. 
Thresholding in wavelet domain is to smooth or to remove 
some coefficients of wavelet transform of the measured 
signal. Through the thresholding operation, the noise content 
of the signal is reduced effectively under the non-stationary 
environment. In this part, a LPF was used to smooth the 
wavelet transform coefficients instead of thresholding method. 

 

VIII. RESULTS 

The following set of tables and figures show the results of 
applying different denoising techniques in both time domain 
and transformed domain. Six levels of SNR were used. These 
are: 0.25, 0.50, 0.75, 1.0, 2.0, and 3.0. Some techniques 
require certain parameters, which are determined via trial and 
error approaches. Tables from 1 to 3 give the output SNR, 
while tables from 4 to 6 provide the values of R between noisy 
input and the filtered signal at each level of noise. It has been 
found that using a transformed technique based on wavelet 
transform of mother function reversed biorthogonal of order 
2.8 and soft thresholding of balanced sparcity norm will give 
the best performance from the point of view of SNR and R. 

IX. CONCLUSION 

We have compared temporal smoothing and transformed 
denoising techniques for a simulated fMRI time-series. 
Summarizing all the presented results of the comparative 
study, it was found that the wavelet transform based on 
reversed biorthogonal of order 2.8 basis function and soft 
thresholding with balanced sparcity norm, provides the best 
denoising from the point of view of SNR, and correlation 
coefficient. 

 

Table.1: Results of applying temporal filters 
SNRi Filter 

Type 0.25 0.50 0.75 1.00 2.00 3.00 
Mean 3.46    5.15 5.89    6.33    7.07    7.32 
Med 2.84    4.00    5.05    5.98 8.74   10.66   

Wiener 7.74    7.36    7.18    7.06    6.84    6.75    
Gaus 6.65    6.65    6.65    6.65    6.65 9.23   
C.A. 1.27    2.67    3.99    5.13    8.60   11.01   

RWA. 4.68    4.83    4.99    5.29    6.18 6.94    
S.S. 1.10 2.00 2.75 3.39 5.24 6.44 

 

Table.2: Results of applying wavelet transform 
SNRi Filter 

Type 0.25 0.50 0.75 1.00 2.00 3.00 
DB.3 1.31    2.48    3.52    4.47    7.55   10.15   
Sym.5 1.31    2.48    3.52    4.47    7.55   10.15  
Mey. 1.36    2.66   3.93    5.15    9.68   13.74  
Haar 1.33   2.36    3.19    3.92    6.41   8.62  
Bior 1.33    2.63    3.91    5.16 10.02   14.60 

Rbior 1.47    2.91    4.31    5.69    10.91  15.72   
Coif.3 1.47    2.90    4.31    5.69    10.91   15.72   

 

Table.3: Results of applying wavelet packet 
SNRi Filter 

Type 0.25 0.50 0.75 1.00 2.00 3.00 
DB.3 1.11    2.21    3.24    4.18    7.58   10.16   
Sym.5 1.11    2. 21   3.24    4.18    7.58   10.16   
Mey. 1.16    2.36    3.57    4.80    9.61   14.00   
Haar 1.14    2.14  3.03   3.85    6.57    8.54    
Bior 1.20    2.50    3.82 5.13    10.68   15.63   

Rbior 1.11    2.30    3.46   4.72    9.88   14.99   
Coif.3 1.21    2.40    3.58    4.74 8.70    11.69 
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Table.4: Correlation coefficients  of temporal filters 
SNRi Filter 

Type 0.25 0.50 0.75 1.00 2.00 3.00 
Mean 0.56 0.65 0.70 0.78 0.81 0.87 

Median 0.60 0.67 0.73 0.79 0.86 0.91 
Wiener 0.72 0.79 0.82 0.87 0.91 0.94 
Gauss. 0.67 0.73 0.80 0.85 0.90 0.92 
C.A. 0.70 0.73 0.81 0.87 0.90 0.91 

R.W.M. 0.69 0.71 0.82 0.85 0.87 0.89 
S.S. 0.67 0.70 0.76 0.80 0.84 0.88 

 
Table.5: Correlation coefficients  of wavelet transform 

SNRi Filter 
Type 0.25 0.50 0.75 1.00 2.00 3.00 
DB.3 0.69 0.78 0.86 0.91 0.94 0.95 
Sym.5 0.69 0.78 0.86 0.91 0.94 0.95 
Meyer 0.71 0.81 0.85 0.88 0.93 0.96 
Haar 0.64 0.74 0.78 0.82 0.88 0.91 
Bior 0.71 0.81 0.86 0.88 0.94 0.95 

Rbior 0.73 0.83 0.87 0.89 0.94 0.96 
Coif.3 0.71 0.80 0.85 0.87 0.92 0.94 

 
Table.6: Correlation coefficients  of wavelet packet 

SNRi Filter 
Type 0.25 0.50 0.75 1.00 2.00 3.00 
DB.3 0.69 0.80 0.85 0.88 0.94 0.96 
Sym.5 0.66 0.77 0.82 0.85 0.91 0.93 
Meyer 0.68 0.79 0.84 0.88 0.93 0.95 
Haar 0.62 0.73 0.78 0.82 0.88 0.91 
Bior 0.69 0.80 0.86 0.89 0.94 0.96 

Rbior 0.67 0.79 0.84 0.87 0.94 0.96 
Coif.3 0.68 0.79 0.84 0.87 0.94 0.96 

 
Fig.5 The results of SNRo for temporal techniques. 

 
Fig.6 The results of SNRo for wavelet transform. 

 

 
Fig.7 The results of SNRo for wavelet packet. 

 

 
Fig.8 The output signal of robust weighted average. 
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Fig.9 The output signal of wavelet transform based on reversed 

biorthogonal. 

 
Fig.10 The output signal of wavelet packet based on reversed 

biorthogonal. 
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