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Abstract: This paper demonstrates the applicability of the least 
square boundary method (LSBM) in the eccentric Archimedean 
spiral antenna analysis. It appeared that the boundary condition 
is highly fulfilled by a small number of eigenfunctions, which 
makes the obtained results very reliable. The radiation field is 
found in the  far zone. 
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I. INTRODUCTION 

Radiation problem is certainly one of the most complex 
problem in linear electromagnetic. For a long time in the 
antenna analysis the method of moments has been most 
frequently used. Although this method is still very much 
employed (see f.e. [1], [2], [3]) it seems that in the last decade  
Finite-difference time-domain (FDTD) has become more 
popular (some of the recent references f.e. [4], [5], [6]). Any 
attempt to find solution in a closed form by using 
eigenfunctions of the wave equation even for a relatively 
simple structure such as circular loop [7] or conic [8] antennas 
leads to a rather cumbersome procedure. 

In this paper for field analysis of the eccentric Archimedean 
spiral antenna the Least-squares boundary Residual method is 
applied. Magnetic vector potential is expressed as a linear 
combination of the wave equation eigenfunctions, the 
unknown expansion coefficients follow from the minimization 
of the square error in the boundary condition fulfillment. This 
method, in original or modified form, has been found as 
simple and highly accurate in wide range of electromagnetic 
problems ([9],[10],[11],[12],[13],[14]). 

II. THEORETICAL ANALYSIS 

There is an antenna's structure (figure 1) in xoy plane 
( 2

πθ = ). Antenna is fed by a source of harmonic voltage with 

effective value U.  

 
 
 
 
 
 
 

Fig. 1. Eccentric Archimedean  spiral antenna 
 

The antenna’s structure such as Archimedean spiral has two 
arms  described by the following equations in a spherical 
coordinate system: 

bkKar +++= 21cos2 ϕϕ    πϕ m20 ≤≤    upper arm                (1) 

( ) bkKar +++−−= 21cos2' φπφ ( )πφπ 12 +≤≤ m    lower arm 

where 
π2
∆=a is a spiral constant, b is the initial point, k  is 

eccentricity constant.  
In a general case the field radiation, anywhere from the 

antenna does not belong to the TE and TM wave. All field 
components can be derived from the radial component of 
magnetic and electric vector potential. 
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m n
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nPkrnBmnDrF ϕθ )(cos)(  

where mnC  and mnD  are the unknown expansion coeficients, 

)(krnB  Bessel functions and )(cosθm
nP  Legandre polynoms. 

Field components are given as [15]: 
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The boundary condition is the annulation of the tangential 
electric field components on the antenna's arms surfaces. In 
this case tangential components on the antenna's arms surfaces 
have ϕE and rE  components. The boundary condition for 
upper and lower antenna's arms are given as: 
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The angles between the tangent on the antenna lines and the 
field components are: 
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Inserting the electrical field components (2.a), into the 
boundary condition (3.a,b), the boundary condition is given as: 
for upper arm 
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where eigenfunctions are: 
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for lower arm 
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where eigenfunctions are: 
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To simplify the systems (4.a,b), we shall transform them into 
the following expressions:  
for upper arm 
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for lower arm 
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 We shall get system of algebraic equations for unknown 
coefficients nmS , taking the nmF as weighting functions: 
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The length elements of the upper and lower arms are: 
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As the space includes the point 0→r , )(krnB are spherical 

Bessel functions. Because of the radiation condition, in the far 
zone the field potentials and consequently the field 
components are to be expressed by the Hanckel’s functions. So 
the field potentials are given as: 
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obtained by equalizing the expressions (2) and (7) on the 
sphere of radius )max(rR = : 

 
( ) ( )

( )kRnH
kRnB

nmCnm =1β
 (8) 

 
( ) ( )

( )kRnH
kRnB

nmDnm =2β
 

Knowing that in the far zone ( )∞→r  Hanckel's functions 
become ( ) jkrenj −+1 ,the field component 0→rE , and the only 
existing  components are ϕE  and θE .   
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The radiation characteristics has a two components:  
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III. NUMERICAL RESULTS 

We analyzed eccentric Archimedean spiral antennas. On the 
figure 2.a,b radiation patterns of eccentric Archimedean spiral 
for two different spiral constant and two values of the 
eccentricity constants are given. 
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(c) 8.0=k  

Fig. 2.a Radiation patterns of eccentricArchimedean spiral antenna. 
 ( left column ϕE , right column θE ; λ25.0=∆ ) 
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Fig. 2.b Radiation patterns of eccentricArchimedean spiral antenna. 
 ( left column ϕE , right column θE ; λ5.0=∆ ) 

Radiation patterns of  ϕE  and θE  are given in left and right 
columns. The patterns are normalized to the case 0=k , i.e. to 
the noneccentric antenna. The expected displacements of 
maximal radiations can easily be noticed and also that the 
greater eccentricity produces the grater displacement. The 
radiation characteristic for ϕE  component in almost all cases 
has flater shape with small, in some cases even negligible side 
lobes. This is not so for θE  component, which has very 
pronounced side lobes. All radiation patterns are plotted in the 
plane o0=ϕ . 

The maximal gains for three spiral eccentricities are given in 
Table I. 

TABLE I. 
spiral geometry 0=k  4.0=k  8.0=k  

λ25.0=∆ , πϕ 20 ≤≤  4.05 dB 5.22 dB 6.84 dB 

λ5.0=∆ , πϕ 20 ≤≤  3.99 dB 5.34 dB 7.18 dB 

We can see that the larger eccentricity produces the greater 
gain in direction of maximal radiation. 

Fig.3. gives the comparison of the results obtained by our 
theory and results of the theory discribed in [1]. 
 

 
 
 
 
 
 
 
 

Fig. 3. Comparison of gains of the spiral with 
ooradma 162090,/00144.0 ≤≤= ϕ   

(our results, results from [1]) 
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A very good coincidence can be noticed for the case 0=k . 
The greatest deviation is for the spiral eccentricity 4.0=k  

In all analyzed cases a very high accuracy in the boundary 
condition fulfillment is achieved with no more than twenty 
numbers of the series (2). As an example, the boundary 
condition error on upper and lower antenna arms is given on 
Fig. 4. 
 
 
 
 
 
 
 
 

Fig. 4. The boundary condition error 

IV. CONCLUSION 

The applicability of the Least square boundary residual 
method to the analysis of eccentric Archimedean spiral has 
been demonstrated. The radiation patterns of eccentric spiral 
with two spiral constants and two eccentricities are obtained. 
Also, in all cases the directivities have been calculated. It was 
noticed that the enlargement of the spiral eccentricity produces 
higher gain in the direction of maximal radiation. The obtained 
gain patterns are compared with those given in Ref. [1]. A very 
good fulfillment of the boundary condition on the entire 
antenna was achieved with no more than twenty basic 
functions. 

Therefore, we may conclude that in the analyzed cases the 
LSBR method turn to be accurate and relatively easy to be 
applied, which recommends it to even more complex radiation 
structures. 
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