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   Abstract −−−− An approximation theory, based on the theory 

of small reflections, to predict the reflection coefficient 

response as a function of the impedance taper is applied in 

the paper. Obtained result is applied to a few common 

types of tapers. Transmission lines with exponential, 

triangular and Hermite taper are considered. All results 

are plotted using program package Mathematica 3.0. The 

presented results should be useful in solving reflection 

coefficient problems. 
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I. INTRODUCTION 
 

The analysis of nonuniform transmission lines has been a 

subject of interest of many authors. Uniform transmission lines 

can be used as impedance transformers depending on the 

frequency and length of the line [1]. The nonuniform lines 

have the advantage of wide-band impedance matching when 

they are used as impedance transformers and larger rejection 

bandwidths when they are used as filters [1, 2]. Some results 

for nonuniform exponential loss transmission line used as 

impedance transformer are presented in papers [3-5]. The 

paper [6] gives a solution in closed-form of the equation for 

value of arbitrary complex impedance transformed through a 

length of lossless, nonuniform transmission line with 

exponential, cosine-squared and parabolic taper. 

In this paper we will derive an approximation theory, based 

on the theory of small reflections, to determine the reflection 

coefficient response as a function of the impedance taper. 

Obtained result is applied to transmission lines with exponen-

tial, triangular and Hermite taper [7]. For all examples the 

voltage standing wave ratio is plotted using program package 

Mathematica 3.0. 
   

II. REFLECTION COEFFICIENT EQUATION FOR 

NONUNIFORM TRANSMISSION LINE 

The traditional way of determining RF impedance was to 

measure voltage standing wave ratio (VSWR) using an RF 

detector, a length of slotted transmission line and a VSWR 

meter. VSWR is defined as the maximum value of the RF 

envelope over the minimum value of the RF envelope. As the 

probe detector was moved along the transmission line, the 

relative position and values of the peaks and valleys were 

noted on the meter. From these measurements, impedance 

could be derived. The procedure was repeated at different 

frequencies. Modern network analyzers measure the incident 

and reflected waves directly during a frequency sweep, and 

impedance results can be displayed in any number of formats. 

Reflection loss is away to express the reflection coefficient 

in logarithmic terms (dB). The reflection coefficient is the 

ratio of the reflected signal voltage level to the incident signal 

voltage level. Reflection loss is the number of decibels that the 

reflected signal is below the incident signal. Reflection loss is 

always expressed as a positive number and varies between 

infinity for a load at the characteristic impedance and 0 dB for 

an open or short circuit.  
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Fig. 1. A tapered transmission line matching section. 

 

Let the transmission line shown in Fig. 1 be considered. The 

continuously tapered line can be modelled by large number of 

incremental sections of length x∆ . One of these sections, 

connected at, has a characteristic impedance of CC ZxZ ∆+)(  

and one before has a characteristic impedance of )(xZC , as it 

is shown in Fig. 2. These impedance values are conveniently 

normalized by 0CZ . Then the incremental reflection 

coefficient from the step at distance x  is given by  
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In the limit as 0→∆ x , it can be written as  
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The corresponding incremental reflection coefficient at the 

input end can be written as follows 
 

Γ≈Γ − dd 2 xj
in e β .   (3) 

 

By using formula (2) of small reflections, the total reflection 

coefficient at the input end of the tapered section can be 

determined by summing all the partial reflections with their 

appropriate phase angles 
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So if )(xZC  is known, reflection coefficient at 0=x  can 

be found as a function of frequency. On the other hand, if inΓ  

is specified, then in principle )(xZC  can be determined. 
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Fig. 2. Model for an incremental step change in 

impedance of the tapered line. 

 

When a transmission line is terminated with an impedance, 

PZ , that is not equal to the characteristic impedance of the 

transmission line, CZ , not all of the incident power is 

absorbed by the termination. One part of the power is reflected 

back so that phase addition and subtraction of the incident and 

reflected waves creates a voltage standing wave pattern on the 

transmission line. The ratio of the maximum to minimum 

voltage is known as the voltage standing wave ratio (VSWR) 

and successive maxima and minima are spaced by 180°. 

   If the equation for reflection coefficient is solved for the 

VSWR, it is found that  
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The reflection or return loss is related through the following 

equation 

 

dBlog20lossReflection 10 inΓ= .      (6) 
 

Reflection loss is a measure in dB of the ratio of power in 

the incident wave to that in the reflected wave, and as defined 

above always has a positive value.  

Also of considerable interest is the mismatch or insertion 

loss. This is a measure of how much the transmitted power is 

attenuated due to reflection. It is given by the following 

equation: 

 

( ) dB1log10lossInsertion
2

10 inΓ−−= .      (7) 
 

Transmission line attenuation improves the VSWR of a load 

or antenna. Therefore, if you are interested in determining the 

performance of antennas, the VSWR should always be 

measured at the antenna connector itself rather than at the 

output of the transmitter. Transmission lines should have their 

insertion loss (attenuation) measured in lieu of VSWR, but 

VSWR measurements of transmission lines are still important 

because connection problems usually show up as VSWR 

spikes. 

III. TAPERED TRANSMISSION LINES 
 

In this paper, three types of nonuniform transmission lines 

with exponential, triangular and Hermite function taper are 

considered. 
 

A. Exponential taper 

Along an exponential taper, the impedance is changing 

exponentially with distance,  
 

( ) xk
CC ZxZ e0= , for dx <<0      (8) 

 

as indicated in Fig. 3. At 0=x  we have 0)0( CC ZZ = . At 

dx =  we wish to have dk
CCdC eZZdZ 0)( == , what 

determines the constant  
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where k  is a taper coefficient and 
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is a taper ratio. 0CZ  and CdZ  are the characteristic impedan-

ces of the transmission line at the left (source) and right (load) 

sides, respectively. 

From (4), the total reflection coefficient at the input end is 

found as  
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B. Triangular taper  

 

Characteristic impedance along triangular taper changes as 
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as it is presented in Fig. 3. 



Zlata Cvetković, Slavoljub Aleksić, Bojana Nikolić 

 47 

Evaluating reflection coefficient from (4) gives 
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C. Hermite taper 

 

In the case of Hermite taper, impedance of the transmission 

line varies with distance x  as follow 
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The resulting reflection coefficient response is given by (4)  
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      Fig. 3 shows the impedance variations for the exponential, 

triangular and Hermite tapers of the same taper ratio, 3=M . 

 

Fig. 3. Impedance variations for the exponential, triangular 

and Hermite tapers of the same taper ratio, 3=M .  

  

IV. NUMERICAL RESULTS 
 

     According to the analysis presented above for exponential, 

triangular and Hermite transmission line, different calculations 

are done. 

 

Fig. 4. Resulting reflection coefficient magnitude 

response on exponential line for different taper ratio. 

 

 

Fig. 5. Resulting VSWR magnitude response  

on exponential line for different taper ratio. 

 

Fig. 6. Resulting reflection coefficient magnitude  

versus frequency for the exponential, triangular  

and Hermite taper. 

 

Fig. 7. Resulting reflection coefficient magnitude  

versus frequency for the exponential, triangular  

and Hermite taper. 

Fig. 4 shows resulting reflection coefficient magnitude 

response on exponential line for different taper ratio 

4,3,2=M . For the same taper ratios on exponential line, Fig. 

5 presents VSWR magnitude response. 
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In order to compare obtained results, we consider an 

exponential, triangular and Hermite taper transmission line, 

which are used at the same taper ratio 3=M , as impedance 

transformers from Ω=1000CZ  to Ω= 300CdZ . 

Resulting reflection coefficient magnitude versus frequency 

for the exponential, triangular and Hermite transmission line 

taper is shown in Fig. 6. 

 In Fig. 7, the voltage standing wave ratio (VSWR) of these 

nonuniform transmission lines is shown.   

All the figures are plotted using program package 

Mathematica 3.0. 

  

V. CONCLUSION 

The modern network analyzer system sweeps very large 

frequency bandwidths and measures the incident power, Pi, 

and the reflected power, Pr . Because of the considerable 

computing power in the network analyzer, the reflection loss is 

calculated from the equation given previously, and displayed 

in real time. Optionally, the VSWR can also be calculated 

from the reflection loss and displayed real time. 

In this paper, by using small reflections, the total reflection 

coefficient at the input end of the tapered section is 

determined by summing all the partial reflections up these 

incremental reflections with their appropriate phase angles. 

For exponential transmission line, resulting reflection 

coefficient and VSWR magnitude response for different taper 

ratio are presented. In order to compare obtained results for 

exponential, triangular and Hermite transmission line, 

resulting reflection coefficient and VSWR are shown for the 

same taper ratio 3/ 0 == CCd ZZM . 

Obtained results are plotted using program package 

Mathematica 3.0.  
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