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A Unified Neural Network for DC and RF Modeling 

 of AlGaAs HBT’s 
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Abstract – The advantages of heterojunction bipolar transis-

tors (HBTs) make them very promising for modern RF 

communication systems and there is a need for their valid 

description by means of a model. A procedure for HBT DC and 

RF modeling based on a unified neural network approach is 

presented in this paper. The proposed model is characterized by 

high accuracy and efficiency commonly requested for today's 

CAD techniques. 
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I. INTRODUCTION 

ue to the continuously increasing performance of digital 

wireless communication systems, the performances of 

active microwave devices have undergone a tremendous 

improvement in recent years as well. The range of modern 

microwave transistor available for the microwave wireless 

communication systems is wide and includes MESFETs, 

HEMTs, PHEMTs, HBTs, MOSFETs, etc. The choice of the 

RF transistors depends on the performance required for the 

selected wireless application as well as from the commercial 

accessibility, price, availability of CAD models and so on. 

Heterojunction Bipolar Transistors (HBT) have become 

very promising devices for different applications at the 

microwave and millimeter-wave frequencies [1], [2]. They  

are used for power amplifiers as well as for low noise 

amplifiers in mobile communication systems. This device 

technology is considered as very convenient for RF front-end 

circuits in next-generation wireless communications. 

Due to the increasing application of HBT’s in microwave 

circuits and having a need for efficient design of these 

circuits, a valid description of these devices by means of a 

model is required. A shift in the design of microwave 

components can be observed: in addition to the electrical 

characteristics,  other issues such as reduced time to market, 

yield optimization, manufactured-oriented design, tolerance 

analysis, etc., are becoming increasingly important.  
 
During the last decade a tremendous work has been done 

for developing physical and empirical HBT models [3],[4]. 

Despite this fact, we still do not have a standard, fast and 

enough accurate model for HBTs. In most case, the Gummel-

Poon model is insufficient for today’s bipolar transistors.  A 

lot of DC models and RF models can be find in the literature. 

The advanced transistor models could characterize the 

transistor operation in a large bias and frequency range at the 

cost of more complicated extraction methods and measure-

ment efforts due to a large number of unknowns of the 
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transistor equivalent circuit. However, it is not convenient to 

perform statistical CAD which requires, for instance, hund-

reds of analysis, by using these approaches.  

Last years, from the aspect of efficiency, accuracy and 

simplicity, neural network approach has been considered to be 

a good solution for microwave device modeling [5]. They can 

handle severe nonlinearities that are present in the majority of 

practical problems. They are especially useful in situations 

where a classical model-based or parametric approach to 

information processing is difficult to formulate.  

Once developed neural model provides fast response for 

different input vectors that in principle can cover the whole 

operating range. A very important property of neural networks 

is generalisation capability [6], which provides sufficiently 

accurate response for different vectors not included in the 

training set, without additional computational efforts or new 

measurements. 

In this paper, the application of neural network approach 

for modeling DC and RF performances of AlGaAs/GaAs 

HBTs is presented. In this way, an efficient prediction of 

transistor's characteristics over the wide frequency and bias 

condition ranges can be enabled.  

II. MODELING OF HBT’S BY USING NEURAL 

NETWORK APPROACH 

Fig 1. shows an overall neural network configuration that 

provides DC and S-parameters of an HBT at the output  for 

any frequency and bias point within the transistor's operating 

range, presented at the input. 
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Fig 1. Neural network for DC and RF modeling of HBT’s. 

 

Neural network configuration presented in Fig. 1 is 

composed of two sub-networks, one for DC modeling, 

denoted by N[DC], and the other for S-parameter modeling, 

denoted by N[S]. Both sub-networks are MLP (Multi-Layer 

Perceptron Network)-type neural networks. 
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Neural sub-network N[DC] provides DC collector current cI  

and DC base-emitter voltage beV  for any DC collector-emitter 

voltage ceV  and DC base current bI  within the transistor's 

operating range presented at the input of neural model. With 

respect to that, there are two neurons in the input layer 

corresponding to ceV  and bI , and two neurons in the output 

layer corresponding to beV  and cI . 

Therefore, the proposed neural model can predict two DC 

characteristics: 1) ),( bcec IVI - DC collector current cI  in 

terms of DC collector-emitter voltage ceV  and DC base 

current bI , and 2) ),( bcebe IVV  - DC base-emitter voltages 

beV  in terms of DC collector-emitter voltage ceV  and DC 

base current bI . The DC data needed for obtaining a training 

set for the first sub-network have been measured for AlGaAs 

HBT’s with common emitter configuration. 

The second neural sub-network denoted by N[S] enables an 

accurate prediction of magnitudes and angles of four  

S-parameters over the whole frequency range and for any DC 

collector-emitter voltages ceV  and DC collector current cI  

within the operating bias range. Hence, there are three neurons 

in the input layer of the second sub-network N[S] 

corresponding to ceV , cI , and frequency f, and eight neurons 

in the output layer corresponding to the magnitudes and 

angles of S-parameters. 

In both cases two hidden layers have been chosen because 

in this way slightly better have been obtained than with a 

structure containing only one hidden layer. The numbers of 

neurons in hidden layers have been selected on the basis of 

testing several networks with different numbers of hidden 

neurons.  

The neural sub-networks have been trained using a back-

propagation algorithm that is commonly considered as quite 

adequate for this purpose. In order to compare the accuracy of 

the model, the average test error (ATE [%]), the worst-case 

error (WCE [%]), and the Pearson Product-Moment 

correlation coefficient ( r ) between the measured and 

simulated data [5] have been calculated. The correlation 

coefficient indicates how well the modeled values match the 

referent values, i.e. a value near 1 indicates an excellent 

predictive ability.  

The test procedure has been performed not only for the data 

from the training set, but also for the data that are not used in 

the training process, with the aim of checking the 

generalization capability of developed neural networks. 

The data for training and test sets that we used in modeling 

procedure had been obtained by the collaboration with a 

microwave laboratory at Northeastern University, Boston, 

USA, where HBT DC and S-parameter measurements were 

performed. The DC and S-parameter were directly measured 

on wafer AlGaAs HBT’s denoted by HBT40020-002-8.  

The measured data for beV  and cI  refer to collector-emitter 

voltages ceV  within -0.5V÷6V range and to base currents bI  

of 50, 130, 210, 290 and 370 [ Aµ ]. The overall ceV  range 

was divided into two sub-ranges as follows: first sub-range  

(-0.5÷1)V with 0.05V step, and second sub-range (1÷6)V with 

0.5V step. Therefore, the operating DC collector-emitter 

voltages ceV  range was covered with 41 discrete ceV  points 

and the operating DC base currents bI  range was covered 

with 5 discrete points. The beV data and cI  data refer to 205 

points and the total number of these DC data used in training 

and test procedure for the selected HBT transistor was 410. 

From this number, 328 data were used for the training and the 

rest of 82 data was used for a test set with the aim to check the 

generalization capability of the neural network. 

Neural networks with a different number of hidden neurons 

varying between 2 and 10 neurons, have been trained. With 

the aim to additional improve the accuracy of ANN noise 

model triple successive training each neural network was 

performed. Therefore the effective number of trained neural 

networks was 270903 =× . The number of training epochs of 

each network was limited to a maximum of 180. The average 

time needed for the training process on a Pentium 4 with 

processor declared on 2500+ and 512MB RAM was 35 

minutes. However, once trained, the network provides an 

instantaneous response for different input vectors. 

The total number of S-parameters data used for training and 

test procedure for the selected HBT transistor was 5880. The 

data refer to the frequency range (0.05÷40) GHz. This 

frequency range was divided into four sub-ranges as follows: 

first sub-range (0.05÷0.5) GHz with 0.05 GHz step, second 

sub-range (0.5÷1) GHz with 0.1 GHz step, third sub-range 

(1÷10) with 1 GHz step, and fourth sub-range (10÷40) GHz 

with 2 GHz step. Therefore, operating frequency range was 

covered with 35 discrete frequency points. S-parameters have 

been measured for different combinations of DC collector-

emitor voltages and base currents in the whole frequency 

range. DC collector-emitter bias had the fallowing values: 1V, 

3V, 4V, and DC collector current had the following values 

[mA]: 0.5, 1.11, 2.03, 4.26, 9.01, 20.23, 29.99. Therefore, the 

measurements have been performed at 735 operating points 

and eight S-parameter data (magnitudes and angles) 

correspond to each point: 11S , 11S∠ , 12S , 12S∠ , 21S , 

21S∠ , 22S , and 22S∠ . Training set was obtained by 

extracting 595 data points from the measurement data. 

Therefore the training set contained 4760 S-parameters data.  

With the aim to avoid the errors caused by a rapid change 

of some S-parameters angle characteristics between the values 

-180° and +180°, a conversion of the angle range from this 

range to the range (0÷360)° has been applied.  

By using these measured data, several neural networks with 

different number of hidden neurons (between 9 and 16) have 

been trained in the similar way as above.  

In order to check the generalization capability of neural 

sub-network N[S], a test set is generated from the rest of data 

points containing 1120 S-parameters data. The bias points that 

have not been included in the training set had the following 

values:  

 

1) VVce 3= , mAIc 11.1= ; 2) VVce 1= , mAI c 26.4= ;  

3) VVce 3= , mAIc 43.8= ; 4) VVce 4= , mAI c 09.4=  
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III. MODELING RESULTS 

After the training process, neural models have been applied 

to get DC outputs as well as scattering parameter values for 

various input data different from the ones used for training. 

The results have been compared and on the basis of above-

mentioned criteria, the best model has been selected. The best 

results give the first sub-network N[DC] marked by 1M4_4_9 

and the second sub-network N[S] marked by 1M4_15_14. The 

number 1 denotes first of three successive training for the 

selected neural network. The number 4 shows that the neural 

network has four layers. Numbers 4 and 9 denote the number 

of neurons in the first and second hidden layer, respectively. 

In Table 1, as an illustration of the accuracy of the selected 

model, test statistics for DC characteristics for training and 

test data is presented. It could be seen that the value of ATE 

for the training set data is less than 0,442%, and for the test set 

data is less than 0,602%. The value of WCE for the training 

set data is less than 1,660%, and for the test set data is less 

than 1,784%. The correlation coefficient r, in all cases, is 

greater than 0.99. These results show that the selected neural 

sub-network N[DC] gives results of great accuracy and the 

excellent predictive ability. 

The simulated DC characteristics obtained by the selected 

neural model, compared with measured data, are presented in 

following figures: DC base-emitter voltages beV  and collector 

currents cI  versus DC collector-emitter voltages ceV  at five 

discrete DC base currents bI  points are shown in Fig. 2 and 

Fig. 3, respectively. It is important to note that the DC base-

emitter voltages beV  and collector currents cI  are simulated 

for AIb µ290= , a value not included in the training set. Very 
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TABLE 1  ERROR STATISTICS FOR DC CHARACTERISTICS  

 ATE[%]: WCE[%]: r: 

beV  0.347 1.198 0.9999 Training 

data 
cI  0.442 1.660 0.9998 

beV  0.476 1.197 0.9999 Test 

data 
cI  0.602 1.784 0.9999 
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good agreement between simulated and measured 

characteristics can be observed in all cases, which means that 

the developed neural model has a good generalisation 

capability. 

It is known that in some cases neural network over-learning 

could be happen. As a consequence, the prediction for the 

input values used for the training can be excellent (meaning 

very small ATE and WCE and correlation coefficient very 

close to one), but for some other inputs the network can give 

very bad and unexpected results. With the aim to checking the 

model validity additionally, neural network responses for 

practically continuous changes (small steps of change) of bI  

and ceV , have been generated and plotted. Figures 4 and 5 

show the three-dimensional plots of DC base-emitter voltages 

beV  and DC collector currents cI , respectively, as a function 

of continuous changes bI  and ceV . The forms of three-

dimensional surfaces confirm a very good prediction for the 

input values outside of the training set.. 

Fig. 6 shows the magnitudes and angles of S-parameters 

versus frequency, obtained by using the selected neural 

model, at a bias point not included in the training set. For the 

comparison purpose, measured data are shown in the same 

figure. It can be seen that the developed neural model can 

predict device S-parameters with a very good accuracy.    

IV. CONCLUSION 

A new, ANN-based unified approach can be used 

successfully for modeling the DC and S-parameters of HBTs. 

For developing a neural model only a number of measured 

data is needed. That gives an advantage to ANN approach in 

comparison with other modeling approaches, especially when 

the physical operating mechanisms of the device are too 

complex or not well known, which occurs often when some 

novel active devices for modern communication systems have 

to be considered. Developed neural models are characterized 

by high accuracy together with the efficiency and simplicity 

and therefore are convenient for CAD purposes. 
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Fig. 6. The simulated (continual curve) and measured (symbols)  

            S-parameters at the bias point VVce 3= , mAIc 11.1=  


