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2D Electrical Circuit Analysis by Gaussian Procedures 

Miodrag V. Gmitrović and Biljana P. Stošić 
 

 
Abstract – In this paper two efficient procedures for solving 2D 

electrical circuits based on Gaussian elimination procedure are 

proposed. In order to reconsider the efficiency of the proposed 

procedures they are compared with two known procedures and 

the Equivalent Thevenin Sources (ETS) method. The voltage 

vector and impedance matrix of the ETS can be calculated by the 

Gaussian backward elimination procedure.  

Keywords – 2D electrical circuit, Gaussian eliminations  

I. INTRODUCTION 

Two-dimensional (2D) electrical circuit consisting of 

elements with lumped parameters can be used for modeling of 

different physical processes. Some of these processes are 

propagation in microwave transmission lines [1-5], propaga-

tion in connections in microelectronic circuits (RC transmis-

sion lines) [6-7], superconductivity problems [8], diffusion 

problems in nuclear reactors [9] and etc. A complex 2D 

electrical circuit can be modeled in different ways and solved 

in either time or frequency domain. The main problem is 

solving the system of linear equations IYU = , where I  is a 

source vector, U  is a vector of unknown voltages and Y  is an 

admittance matrix of the 2D electrical circuit. It is a very 

important to solve that equation system by using as less as 

possible arithmetic operations. There are some different 

procedures for solving such kind of systems and one of the 

most used is standard Gaussian elimination procedure (GSE) 

[9-11].  

In the previously published papers [1,2], the Equivalent 

Thevenin Source (ETS) method is given. The analysis of 2D 

circuit is based on decomposition of the complex circuit 

structure into cascade-connected ladder subnetworks with 2L 

ports. For each ladder subnetwork corresponding transmission 

matrices are counted and all previously subnetworks are then 

substituted by its L ETS. They represent now the excitation of 

the next ladder subnetwork. The input and output voltages can 

be found by successive application of this procedure. 
 
A 2D electrical circuit can be represented as cascade 

connection of L2  port networks by diakoptics procedure [9], 

as shown in this paper. Admittance matrix Y  is formed by 

appropriate choice of unknown voltages. The matrix is a 

tridiagonal matrix with non-zero submatrices on the main 

diagonal and on the first diagonals above and below the main 

diagonal and zero submatrices elsewhere. In order to solve the 

equation system with this tridiagonal matrix, two efficient 

procedures based on GSE procedure are proposed. The first 

procedure is Gaussian backward elimination (GBE) and the 
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second one is Gaussian direct elimination (GDE). The voltage 

vector TU  and the impedance matrix TZ  of ETS for whole 

2D electrical circuit can be obtained by GBE procedure. In 

order to reconsider the efficiency of the suggested procedures 

(GBE and GDE) they are compared with GSE procedure, ETS 

method and the procedure that involves direct inversion of 

admittance matrix Y  (INV). 

II. GAUSSIAN PROCEDURES 

In Fig.1 a 2D electrical circuit with losses is shown. The 

circuit can be excited by several real voltage sources and 

terminated by several real loads.  
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Fig. 1. A 2D electrical circuit. 

 

A 2D electrical circuit with known voltage sources at the 

input ports and all immittances is observed. The goal is to 

count the node voltages at the output ports. 

If the current sources at the input ports are known 

1/ lSlSl ZUI =  than the unknown node voltages k
lU , 

Kk ,...,2,1= , Ll ,...,2,1= , can be counted from the matrix 

equation system  

 KKK IUY =⋅ . (1) 

In the previous equation system, the current vector is 

 [ ] [ ]TS

TK
K 00IIIII KK ==

21 , (2) 

where  

 [ ]TSLSSS III K21
1

== II  (3) 

and 0000  is a zero vector. 

The voltage vector is 

 [ ]TK
K UUUU K

21
=  (4) 

and the admittance matrix is 
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where 0  is a zero matrix. 

 

In Fig. 2, a thl  node of the thk  ladder subnetwork is depic-

ted. The immittances k
lZ , Ll ,...,2,1= , k

llY 1, + , 1,...,2,1 −= Ll , 

correspond to the serial connections of resistors and inductors, 

and the admittances k
lY , Ll ,...,2,1= , Kk ,...,2,1=  corres-

pond to the shunt connections of conductances and capacitors 

[1-3]. 
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Fig. 2. The 
thl  node of the 

thk  ladder subnetwork. 

 

The admittance matrix KY  is a tridiagonal matrix. Also, 

their submatrices k
kk ,Y , Kk ,...,2,1= , are tridiagonal matrices. 

The elements of these submatrices on the main diagonal are 
k
ll

k
ll

k
l

k
l

k
l YYZYZ 1,,1

1/1/1 +−
+

++++ , Ll ,...,2,1=  and 

01,1,0 == +
k

LL
k YY . The elements on the first diagonal above the 

main diagonal are equal to those ones on the first diagonal 

below the main diagonal. Those elements are k
llY 1, +− , 

1,...,2,1 −= Ll . The other elements in these submatrices are 

zeros. 

The submatrices of the matrix KY  on the first diagonals 

above and below the main diagonal are equal k
kk

k
kk 1,

1
,1 −

−
− = YY , 

Kk ,...,3,2= . These submatrices are diagonal matrices with 

the elements on the main diagonal 1/1 +
−

k
lZ , Ll ,...,2,1= , 

1,...,2,1 −= Kk  and zeros elsewhere. 

The system of matrix equations (1) can be solved by GSE 

[8-10] and in that case the admittance matrix KY  is treated as 

full matrix. The matrix KY  (5) has a lot of zero submatrices, 

and because of that standard Gaussian procedure can be 

modified in order to use only non-zero submatrices. Two new 

algorithms that are more efficient for solving matrix equation 

system (1) are proposed in further text. The matrix equation 

system (1) can be observed as a set of K  equation subsys-

tems. Each subsystem has L  linear equations. 

2.1. Gaussian backward elimination procedure (GBE) 

The GBE procedure is a successive solving of the matrix 

equation system (1) starting from the last th
K  linear subsys-

tem, which corresponds to the voltage vector KU , and 

concluding with the first linear equation subsystem 

corresponds to the voltage vector 1U . The electrical circuit 

from Fig.1, for taken voltage vectors kU , Kk ,,2,1 K= , can 

be treated as cascade connection of L2  port subnetworks, 

Fig.3. A tridiagonal admittance matrix KY  given by equation 

(5) can be reduced to a twodiagonal matrix by using GBE 

procedure [9-10]  
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  (6) 

The signs in the left upper corner indicate the iteration 

number. This is valid also for all relations in the further text.  

The submatrices above the main diagonal are equal to those 

ones in the primary matrix (5). The submatrices on the main 

diagonal are counted by using next expressions  
 

 1
11

1
11

1 YY = , (7) 

 ( ) 11
1,1

1
1,1,

−−
−−

−
−− ⋅=

k
kk

kk
kkkk YYM , (8) 

 1
,11,,,

−
−− ⋅−=

k
kkkk

k
kk

k
kk

k YMYY , (9) 

where Kk ,...,3,2= . 

The current vectors can be counted by the relations  

 111 II = , (10) 

 11
1,

1 −−
−

−
⋅−=

kk
kk

kkkk IMII , (11)  

where Kk ,...,3,2= . Having on mind, the current vector KIIII  

given by relation (2), it can be concluded that the current 

vector 0≡
− kk I1  for Kk ,...,3,2= . So, the relation (11) can 

be written as 

 11
1,

−−
− ⋅−=

kk
kk

kk IMI . (12) 

Starting by output ports of the 2D electrical circuit, the 

voltage vectors can be counted by the next relations  
 

 ( ) KKK
KK

KK IYU ⋅=
−1

, , (13) 
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 ( ) ( )kk
kk

kkk
kk

kk UYIYU ⋅−⋅=
−
−

−−−−
−−

−− 1
,1

1111
1,1

11 , (14) 

where 2,3,...,1, −= KKk . 

 

A 2D electrical circuit, Fig. 1, can be represented as 

cascade connection of L2  port subnetworks as shown in Fig. 

3.  
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Fig. 3. Cascade connection of subnetworks with 2L ports. 

Cascade connection of K ladder subnetworks shown in Fig. 

3, can be presented by ETS [2] as shown in Fig. 4. 
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Fig. 4. ETS of voltage K
TU and impedance K

TZ . 

From the Fig.4 can be concluded that the voltage vector at 

the output ports is  

 KK
T

K
T

K IZUU ⋅−= , (15) 

where K
TU  is the voltage vector and K

TZ  is the impedance 

matrix of the ETS. The impedance matrix of the ETS  

 1
, )( −

=
K

KK
KK

T YZ  (16) 

is counted using the submatrix K
KK

K
,Y  from the matrix K

K Y  

(6). The voltage vector 
K
TU  for 0I =

K  is equal to the voltage 

vector KU  obtained by relation (13). The calculated voltage 

vector K
TU  and impedance matrix K

TZ  can be used as inputs 

for the next ladder subnetwork in cascade connection. In this 

way can be solved cascade connection of ladder subnetworks 

with different number of ports. Such type of subnetworks can 

be used for successful analysis of different discontinuities in 

microwave transmission lines. 

 

2.2. Gaussian direct elimination procedure (GDE) 

The GDE procedure is a successive solving of the matrix 

equation system (1) starting from the first linear equation 

subsystem corresponds to the voltage vector 1U  and conclu-

ding with the last th
K  linear subsystem which corresponds to 

the voltage vector KU . In other words, GDE procedure is 

used for calculating the voltages from the matrix system (1) 

starting from the voltage vector 1U . That vector presents the 

voltages on the output ports of the first subnetwork in cascade 

connection, Fig. 3. By the GDE procedure, the matrix KY  is 

reduced to twodiagonal matrix of shape 
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  (17) 

The matrices below the main diagonal are equal to those 

ones in the primary matrix (5). The matrices on the main 

diagonal are counted by next expressions  

 

 K
KK

K
KK ,,

1 YY = , (18) 

 ( ) 11
1,11,1,

−+
++

−
++ ⋅=

k
kk

kKk
kkkk YYM , (19) 

 1
,11,,,

1 +
+⋅+

+−
−=

k
kkkk

k
kk

k
kk

kK YMYY , (20) 

 

where 1,2,...,2,1 −−= KKk .  

The voltages are here counted starting from the voltage 

vector on input ports by using the next relations 

 

 ( ) 111
11

1 IYU ⋅=
−K , (21) 

 ( ) 1
1,

1

,
1 −

−

−+−
⋅⋅−=

kk
kk

k
kk

kKk UYYU , (22) 

where Kk ,...,3,2= .  

The GDE procedure in regards of the GBE procedure does 

not perform changes in current vector and the matrix equation 

system (1) is solved with less number of arithmetic operations.  

III. EFFICIENCY ANALYSIS 

In order to reconsider the efficiency of the suggested 

procedures (GBE and GDE), 2D electrical circuits of various 

complexities are solved. The equivalent circuit composed as 

cascade-connected multi-port subnetworks shown in Fig.3 is 

analysed. The number of input ports is 10=L  and the number 

of cascade-connected subnetworks is 200,...,2,1=K . In this 

case, the largest equation system has 2000 unknown voltages. 

The efficiency-testing program is done in MATLAB [12] on 

PC 2.4 GHz.  

Graphs of time needed for solving the equation system 

versus the number of networks in cascade connection K , are 

depicted in Fig.5. The time needed for the forming of 

admittance matrix KYYYY  of the 2D circuit is included in the time 

needed for solving the equation system for all procedures. The 

MATLAB built-in functions are used for standard Gaussian 
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elimination procedure (GSE), i.e. IYU \= , and matrix inver-

sion procedure (INV), i.e. IYU ⋅= )inv( . The expressions 

given in the papers [1-3] are used for the ETS method (ETS).  

 

 

Fig. 5. Curve efficiency graph. 

 

It can be inferred that the matrix inversion procedure 

requires the longest time needed for solving the equation 

system. In that case, a full admittance matrix KY  is solved. 

The full admittance matrix is also solved by Gaussian standard 

procedure, but it is more efficient than the matrix inversion 

procedure. In MATLAB, the computations involving the 

backslash operator ( \ ) require less computer time, less 

memory and have better error detection properties than the 

other one which forms the direct inverse ( inv ).  

In the case when voltages in all nodes KU  are to be 

calculated, the most efficient method of INV, GSE, ETS, GBE 

and GDE, is the suggested procedure GDE since it doesn’t 

require the calculation of the current vector KI . In the case 

when only output voltages KU are to be calculated, the 

suggested procedure GBE and the ETS method require almost 

the same time for solving 2D circuit. The ETS method doesn’t 

require the calculation of the current vectors.  

It is important to say that GDE procedure requires 

calculation of all node voltages in order to get the voltage 

vector KU  at the output ports. The essential advantage of the 

suggested GBE procedure is direct calculation of the output 

voltage vector without calculation of voltages in all circuit 

nodes. The other advantage of the GBE procedure is direct 

calculation of the ETS elements, i.e. the voltage vector K
TU  

and the impedance matrix K
TZ . 

 

IV. CONCLUSION 

Two efficient procedures for solving matrix equation 

systems (1), which admittance matrix is a tridiagonal matrix, 

are proposed in this paper. Such admittance matrix is found 

for the 2D electrical circuits, Fig. 1, represented as cascade-

connected ladder L2  port subnetworks with voltages assigned 

as shown in Fig. 3.  

It is shown that in the case when all voltages are to be 

calculated, the most efficient procedure of all is the GDE 

procedure. The most common case in practice is the 

calculation of the output voltages KU  only. In that case, the 

most efficient procedures are the GBE procedure and the ETS 

method [2]. The GBE procedure can be used for calculating 

the voltage vector K
TU  and the impedance matrix K

TZ  of the 

known 2D electrical circuit. The suggested GBE procedure 

can be used successfully for solving complex microwave 

circuits containing transmission lines.  
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