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Vector's model of spatial-temporal signal, interference 

and noise for simulating radar's optimal processor 

Le Quoc Vuong
1 

Abstract – By construction mathematical model of spatial – 

temporal signal as a vector, with same way the article will const-

ruct the model of spatial – temporal interference, noise and 

combinatorial interference-noise. In the result, one can define the 

spatial-temporal interference-noise covariance matrix. This is the 

key step for simulation optimal interference suppressive proces-

sor using in radar.1 
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I. INTRODUCE  

  For increasing probability of target detection (such as 

predetective process), in modern radar systems one often 

apply the spatial – temporal optimal processor (STOP). The 

basic task of STOP is to combine the signals in such a way 

that the interference is reduced to the level of the thermal 

noise while the desired signal is preserved. Stated another 

way, the goal of STOP would like to maximize the output 

Signal to Interference plus Noise Ratio (SINR). The general 

schema of STOP is shown in Figure 1.1. 

 

From this schema, we can see that the STOP consists of 

two basic steps: Optimal interference suppression and spatial - 

temporal matched filter. Wherein, the optimal interference 
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suppression filter plays most importance role and is an essen-

tial step to increased SINR. By nature, it is a digital filter, 

knows as optimal interference suppressive filter and its 

frequency response has form of inverse interference spectrum. 

To satisfying the special requirement of this frequency 

response, the coefficients (or weights) of the digital filter are 

defined by some algorithm (often it is adaptive algorithm), 

that base on estimation of interference spectrum. By close 

mathematical provableness, one has gained result: The 

coefficients of the digital filter accurately equal components 

of inverse interference-noise covariance matrix Q
-1

. Therefore 

in simulative models of the STOP, one often use the block Q
-1

 

instead of the optimal interference suppressive filter. For 

example, the simulative model of Auxiliary Channel 

Processor (ACP) shown on Figure 1.2 is a characteristic 

Spatial - Temporal Near-Optimal Processor. In this model, the 

optimal interference suppressive filter has been simplifying 

such as the first row of inverse of interference-noise 

covariance matrix. 

  

For these reasons, the most important problem in simula-

tive process of Spatial – Temporal Optimal Processor is 

definition of interference-noise covariance matrix Q. 

 

II. VECTOR'S MODELS OF SPATIAL, TEMPORAL AND 

SPATIAL-TEMPORAL SIGNALS 
 

The construction for mathematical models of signals is to 

organize and arrange data in some fixed order. The vector's 

model of signal consist of 2 parts: the scalar part is represent 
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for the length of this vector, which is frequently called module 

or amplitude and the directional part of vector is an unit vector 

(having unit norm), that is frequently called steered vector of 

signal. 

 In the spatial domain, by [1, 2] we have a vector of spatial 

signal, that is the set of received signals from series outputs of 

N  sensors, which is on a line with equal spacing between 

them (or uniform linear). It can be expressed as: 

                        ( ) ( ) ( ) ( )( ) ( ). .
K K Ks

n N f s n=s v
                

(2.1) 

where: ( )s n  is amplitude (scalar part) of the signal vector, 

received from any output of a arbitrary sensor at a time instant n ; 

 ( )Ks
f  is normalized spatial frequency of signal, which 

is defined by: 

                                 

( )

0

.sinKs s
d

f
ϕ

λ
=

                               (2.2) 

d  – uniform space between 2 successive sensors; 

 
s

ϕ – azimuth angle of arrival signal; 

 
0λ – wavelength of carried signal; 

The ( ) ( )( )K Ks
fv  is steering vector of spatial signal, that is 

a Vandermonde vector. In this case we can write: 

       ( ) ( )( )
( ) ( ) ( ) /

2 121
1 ...

KsKsK Ks j M fj f
f e e

N

ππ − −− =   
v  (2.3) 

 (Note: From (2.3) it can be deduce ( ) ( )*
1

K K
=v v , or the 

norm of steering vector ( )K
v  equals unity); 

Notation K - refers to space; 

Notation s - refers to signal. 

 Likewise, in temporal domain, we can introduce the 

concepts about vector of temporal signal and steering vector 

of temporal signal. In accordance to [2], the reflective signal 

received from a moving target and defined at a time instant n 

on output of any arbitrary sensor, supposed being on the first 

sensor, has the form: 

                                      
( ) 2

. P Dsj nT f
s n A e

π=
                         

(2.4) 

where: TP  is a pulse's period; 

 
Dsf  is Doppler frequency of target's signal, which 

defined as: 

                                      0

2
cos

p

D

v
f ϕ

λ
=

                             

(2.5) 

 If set: 

                                  

( )Ts Ds
P Ds

P

f
f T f

f
= =

                           

(2.6) 

Then ( )Ts
f  is called the normalized temporal frequency of 

signal and now (2.4) can rewrite as: 

                                    
( )

( )
2.

Ts
j nfs n A e π=

                           (2.7) 

 When this signal pass through a delay line consisted of 

1M −  tabs, what the lag of each tab equals 
pT , it is cor-

respond to phase rotation at an angle 2 p Dj T fπ− (radian). 

Thus, the input signal of delay line is: 

( ) ( ) ( )
( )2

1 .
TsT j nf

s n s n A e
π= = . The signal after first lag is: 

( ) ( ) ( ) ( )2 1

2 .
Ts

T j n f
s n A e

π −
= . The signal after second lag is: 

( ) ( ) ( ) ( )2 2

3 .
Ts

T j n f
s n A e

π −
= . The signal after 1M −  -st lag is: 

( ) ( ) ( ) ( )2 1
.

Ts
j n M fT

Ms n A e
π − −  = . 

Denoted ( ) ( )T
ns  to be the temporal signal vector, which 

comprised of output signals of all successive delay taps, and 

then we have: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
/

1 2 ...
T T T T

Mn s n s n s n = = s  

( ) ( ) ( ) ( ) ( ) /
2 12 12. . ... .

TsTsTs j n M fj n fj nf
A e A e A e

πππ − − −   = =
  

 

  

( ) ( ) ( ) ( ) /
2 12 2. 1 ...

TsTs Ts j M fj nf j f
A e e e

ππ π − −− = =    

     

( ) ( )( ) ( ).
T Ts

M f s n= v
                                                  

(2.8) 

where: ( ) ( )( )T Ts
fv  is temporal signal steering vector, in 

which: 

       ( ) ( )( )
( ) ( ) ( ) /

2 121
1 ...

TsTsT Ts j M fj f
f e e

M

ππ − −− =   
v   (2.9) 

 (Note: From (2.9) it can be deduce ( ) ( )*
1

T T
=v v , or the 

norm of ( )T
v  equals unity). 

 The term "steering" expresses a common meaning, which 

in detail as "rotating to a direction..." in the spatial domain or 

"reaching to frequency..." in the time domain. 

 By use of one dimension signal vectors above, we can 

construct the vector's model of spatial-temporal signal. From 

the steering vector of spatial signal (1.3) and steering vector of 

temporal signal (1.8) we have the steering vector of spatial-

temporal signal corresponding to the normalized temporal 

frequency ( )Ks
f  and Doppler normalized frequency ( )Ts

f : 

              ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ),
KT Ks Ts K Ks T Ts

f f f f= ⊗v v v     (2.10) 

where ⊗  is Kronecker product of 2 vectors; notation (KT) 

expresses the quantities in two-directional spatial-temporal 

domain. This vector is similar two correspond one-directional 

steering vector which has unit norm, that is ( ) ( )*
1

KT KT
=v v . From 

(2.10) shown that spatial-temporal steering vector has dimension 

1NM × . With spatial-temporal steering vector ( )KT
v  we can 

construct the vector model of spatial-temporal signal, which has 

normalized temporal frequency ( )Ks
f  and normalized Doppler 

frequency ( )Ts
f : 

                  

( ) ( ) ( ) ( ) ( )( ) ( ). , .
KT KT Ks Ts

n NM f f s n=s v
          (2.11) 

 Note that, the time variance n in (2.11) for quantities in 

two-dimension spatial-temporal domain "spreads" on an 

interval, which is defined: 

 – In space, it is the time for the signal passing over N 

sensors: 
NT  
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– In time, it is the time for the signal passing over (M-1) 

delay taps: ( )1M τ− . 

Normally, ( )1 NM Tτ− � , therefore the actual spreading 

time is ( )1M τ− . Due to interested quantities are examined at 

the same starting time, therefore the variance n is not 

necessary. Thus, (2.11) can be rewritten: 

                         

( ) ( ) ( ) ( )( ). , .
KT KT Ks Ts

NM f f s=s v
           

(2.12) 

 The dimension of vector ( )KT
s  is ( )1NM × . 

 The simulation algorithm of spatial-temporal signal vector 

followed (2.12) need input data, which comprise amount of 

sensors N, delay taps M, signal amplitude s, normalized spatial 

frequency ( )Ks
f  and normalized Doppler frequency ( )Ts

f . Where, 

the steering vector is defined follow (2.10). 

III. VECTOR'S MODEL OF SPATIAL-TEMPORAL 

INTERFERENCE AND NOISE. 

CONSTRUCTION COVARIANCE 

MATRIX OF INTERFERENCE - NOISE 

Suppose that there are C interference sources, divided into: 

 – CK spatial interference sources, corresponding to the 

spatial frequencies ( )Ki

pf
 
with ( 1 Kp C= ÷ ); 

 – CT temporal interference sources, corresponding to the 

temporal frequencies ( )Ti

q
f   with ( 1

T
q C= ÷ ); 

where, notation i expresses the quantities related to 

interference and 
K T

C C C= + . 

 With interference, the spatial and temporal frequencies 

have relation following (2.6) (ϕ  corresponding to the spatial 

frequency defined in (2.2), 
D

f  corresponding to temporal fre-

quency in (2.6)). Therefore, each spatial frequency ( )Ki

p
f  cor-

responds to the temporal frequency ( )Ti

p
f  and each temporal 

frequency ( )Ti

q
f  corresponds to spatial frequency ( )Ki

q
f . In the 

other words, C interference sources correspond to C couple of 

spatial frequency ( )Ki

l
f  and temporal frequency ( )Ti

l
f , with 

1l C= ÷ . 

 It can be deduce that, similarly to the vector of spatial-

temporal signal (2.12), we can construct the vector of spatial - 

temporal interference for an interference source l , amplitude 

il
σ . It is written as: 

                      ( ) ( ) ( ) ( )( ). . ,
KT KT Ki Ti

l il l l
NM f fσ=i v                (3.1) 

 The dimension of vector ( )KT

l
i  is ( )1NM × . 

 The general spatial - temporal interfe-rence vector of all 

interference sources is: 

                                      

( ) ( )

1

C
KT KT

l

l=

=∑i i

                              

(3.2) 

 Assume that, the interference intensity on each of all 

directions (corresponding to all Doppler frequencies) is equal, 

that is 
il i

σ σ=  with all l. Then (3.2) is now expanded: 

     

( ) ( ) ( ) ( )( ) ( )

1

. , . .
C

KT KT Ki Ti KT

i l l i C

l

NM f f NM vσ σ
=

= =∑i v

 
(3.3)

 

where 
( ) ( ) ( ) ( )( )

1

,
C

KT KT Ki Ti

C l l

l

f f
=

=∑v v  is general spatial – tem–

poral interference steering vector with dimension ( )1NM × . 

One element at k
th

 row (k = p,q) of this vector is detail exp–

ressed in form: 

                         ( ) ( )
( ) ( )( )2

1

,
Ki Ti

l l

C
j pf qfKT

C

l

v p q e
π− +

=

=∑                 (3.4) 

where: 1p N= ÷ and 1q M= ÷ . 

 The vector of spatial – temporal noise is the set of energy 

existing over all spatial – temporal channels, is also const-

ructed in way based on (2.12). Assumed that the white noise 

having amplitude 
n

σ
 
contributes equally on all spatial – tem–

poral channels, and then the vector of spatial – temporal noise 

has the form: 

                    

( ) ( ) ( ) ( )( ). . ,
KT KT Kn Tn

n
NM f fσ=n v

               
(3.5) 

with dimension ( )1NM × . 

 The simulation algorithm of the general spatial – temporal 

interference vector carrying out by (3.3) requires input data, 

which composed of amount sensors N, delay taps M, isotropic 

interference amplitude 
i

σ  and C normal spatial frequency of 

the interference ( )Ki

l
f . The normalized Doppler frequencies of 

the interference ( )Ti

l
f  are defined through normalized spatial 

frequency of the interference ( )Ki

l
f  by (2.2), (2.5) and (2.6). In 

which, steering vector is still defined by (2.10) 

 The simulation algorithm of the vector of spatial - temporal 

noise carrying out by (3.5) requires input data, which 

composed of amount sensors N, delay taps M, isotropic noise 

amplitude 
n

σ , normalized spatial frequency ( )Kn
f  and 

normalized Doppler frequency ( )Tn
f . In which, steering vector 

is still defined by (2.10). 

 The combinative spatial - temporal signal vector also 

commonly referred to as spatial - temporal data vector ( )KT
x  

has the form: 

                            
( ) ( ) ( ) ( )KT KT KT KT

= + +x s i n                     (3.6) 

where: ( )KT
s  – the spatial - temporal signal vector; 

           ( )KT
i  – the general spatial– temporal interference vector 

           
( )KT

n  – the spatial – temporal noise vector. 

 

Note that, all the spatial – temporal vectors shown in (3.6) 
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have the dimension corresponding to the signal vector that is 

equal to 1NM × . 
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The summation of the interference and noise vector, deno-

ted as ( )KT
q , is called the spatial –  temporal interference – 

noise vector: 

                                  
( ) ( ) ( )KT KT KT

= +q i n                            
(3.7) 

 The spatial – temporal interference-noise covariance mat–

rix - Q , is defined as: 

                               ( ) ( )( ){ }*

.
KT KT

EQ q q�                         (3.8) 

 Thus Q  has the dimension NM NM×  and it is determined 

as followings. 

 Due to the linearity of the mathematical expectation 

operator and note that interference and noise are not 

correlative, therefore with respect to (3.8), we can expand as 

follow: 

( ) ( )( ) ( ) ( )( ){ }*
KT KT KT KT

E= + + =Q i n i n
          

( ) ( ){ } ( ) ( ){ }* *. .
KT KT KT KT

i nE E= + = +i i n n Q Q
    

(3.9)
 

where: Qi - is the spatial - temporal interference covariance 

matrix; 

Qn - is the spatial - temporal noise covariance matrix. 

      *Determining the noise covariance matrix   

     ( ) ( ){ }*.
KT KT

n E=Q n n : 

 Replacing the spatial-temporal vector value in (3.5), we 

get: 

                                      
2

n n nPσ= =Q I I
                           

(3.10) 

where:  I - is unit diagonal matrix; 

 Pn - is the noise mean power. 

 Physically, we may clearly understand the meaning of 

(3.10), because of un-correlation of the noises in both spatial 

and temporal, therefore the only elements lying on diagonal 

are equal to 1 (due to the auto-correlation), the others are 

equal to 0. 

 * Determining the interference covariance matrix  

    ( ) ( ){ }*
.

KT KT

i E=Q i i : 

 Replacing the spatial – temporal interference vector value 

in (3.3), we get: 

              

( ) ( ){ } ( ) ( ){ }* *2. . . .
KT KT KT KT

i i C C i C CE P Eσ= =Q v v v v
     

(3.11)
 

where: Pi - is the interference mean power. 

 The solution to determine any one of elements of the 

interference covariance matrix is presented as following: 

 – As we knew, an element lying on the row  p&q of the 

general steering vector has the form shown in (3.4). 

 – By similarly way, we may determine any one of elements 

lying on the column (g,h) of the vector ( )*KT

Cv : 

                         ( ) ( )
( ) ( )( )2

1

,
Ki Ti

l l

C
j gf hfKT

C

l

v g h e
π +

=

=∑                  (3.12) 

with 1g N= ÷  and 1h M= ÷ . 

 – From the (3.4) and (3.12), we can find out an element 

lying on row (p,q) and at the column (g,h) of the interference 

covariance matrix Qi determined as form: 

        

  ( ) ( ) ( ) ( ) ( ){ }*
, ; , . , . ,

KT KT

i i C CQ p q g h P E v p q v g h= =  

                             
( ) ( ) ( ) ( )( )2

1

.
Ki Ti

l l

C
j g p f h q f

i

l

P e
π − + −

=

= ∑                 (3.13) 

 

IV. CONCLUSION 

 In fact, mathematical models of spatial-temporal signals 

may be shown by alternative 3 methods: 

 The classically expression method that common used is 

analytic form. By this method, the mathematical model of 

signal is shown in form as a function. In the case of spatial-

temporal signal, the analytic model is a multi-variable 

function (or multidimensional function). This method is very 

general and often uses to analyze any signal or system. But it 

has the basic weakness, that is: It can't be use in simulation, 

because can't construct the spatial-temporal interference-noise 

covariance matrix from it. 

 For multidimensional signals such as the spatial-temporal 

signals, we may apply matrix solution to mathematically 

simulate them. However, the interference-noise covariance 

matrix expressing the correlation among elements of the two 

matrices will have spatial dimension very large and become 

extremely complex. Therefore, this method is unprofitable to 

simulate spatial-temporal optimal processor. 

 Thus the expression of vector model provided in this article 

is rather simple to simulate process of interference 

suppression, using in spatial-temporal signal vector model. 

This affirms the special advantages of the spatial-temporal 

signal vector model. 
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