
29 June – 1 July 2006, Sofia, Bulgaria

113

Model of OSA / Parlay Gateway

For Call Control

Hristo E. Froloshki, Evelina N. Pencheva
1

Abstract – Present paper focuses on Parlay/OSA call control

functionality. Generic Call Control methods and parameters

used in communication with applications were thoroughly

analyzed with primary research goal set on definition of OSA

compliant generic call agent. Some considerations and guidelines

concerning the specialization of the model in supporting different

networks are presented as well.

Keywords – OSA interfaces, Call Agent, Call Control

I. INTRODUCTION

Parlay/OSA (Open Service Access) architecture is

telecommunication industry’s response to the challenge of

offering flexible and attractive services to customers. It joins

IT and telecom efforts in defining a comprehensive set of

Application Programming Interfaces (APIs), with final goal

set to bring wide developer community in the area of service

creation. The approach hides operator network’s complexity

through strictly defined APIs integrated with well known

development environments or coming as software develop-

ment kits (SDKs) using popular programming language like

JAVA. APIs are used by developers to access objects

abstracting network resources – these objects are usually run

on service platforms [1], directly connected to particular

network(s). Although intended for UMTS networks, the

principles of Parlay/OSA are applicable in the next generation

network domain as well (Figure 1). Some very attractive

network capabilities become available (for applications)

through Parlay/OSA interfaces: location, mobility, call

control, etc. OSA enhances the traditional Intelligent Network

(IN) approach of defining building blocks [2] by offering

developers objects abstracting network capabilities, enabling

them to define the next generation of services for both UMTS

and fixed networks. Call control capabilities are split in three

Service Capability Features (SCFs): Generic Call Control

(GCC), Multiparty Call Control (MPCC), and Multimedia

Call Control (MMCC).

Present paper focuses on objects defined in GCC, with the

aim to model their behavior in the context of a working

Parlay/OSA gateway. OSA specifications [3]-[5] define call

control through interfaces of objects, implementing the

particular functionality. Implementation of OSA gateway

functionality requires generic call agent model, capable of

communicating both with application and underlying network.

Figure 1. Next Generation Network1

1 1Hristo Froloshki and Evelina Pencheva are with Faculty of Communications, Technical University of Sofia, 8, “Kliment Ohridsky” blvd, Sofia 1000, Bulgaria

E-mail:, hef@tu-sofia.bg, enp@tu-sofia.bg

Model of OSA / Parlay Gateway For Call Control

 114

The proposed generic object model is suitable for

adaptation to different transport technologies, through the use

of generalization and specialization approaches. The paper

presents object-oriented call agent model, enabled for appli-

cation interaction. Possible specializations aiming at compa-

tibility with diverse underlying networks are considered.

II. OSA CALL CONTROL INTERFCES

Generic Call Control SCF provides definition of objects,

needed both by entities abstracting underlying network (SCS)

and applications [6]. The object responsible for handling

application notification is IpCallControlManager. It has the

ability to set/remove load control on particular address range

but its primary task is the creation of IpCall objects. IpCall is

the actual interface, allowing an application to control a call in

the underlying network (route/release call, gather charging

information, etc.).

Each application should pass successfully authentication

and service selection steps, and then the framework instructs

service lifecycle manager to create an instance of requested

service manager (IpCallControlManager in our case).

IpCallControlManager in turn creates IpCall to provide the

application with control over a call that matched certain

criteria. Most objects in Parlay/OSA utilize asynchronous

methods to transfer notifications. An essential step in each

object’s creation is the setting of a reference to its peer object

on application part (i.e. the callback interface).

Functionality described so far is relevant for the service

layer of Parlay/OSA architecture. However, a functional call

agent model should be able to translate the methods invoked

on call abstracting objects into protocol (ISUP, INAP, SIP,

MAP, etc.) messages, understandable for the nodes, residing

on the resource level.

III. GENERIC CALL AGENT MODEL

IpCallControlManager is the primary interface providing

management functions to the generic call control service. It is

implemented by Generic Call Control SCF and it must support

at least the methods createCall(), enableCallNotification(),

disableCallNotification(). An example flow of invoked

methods during its operation is presented on Figure 2. Service

Instance Lifecycle Manager creates an instance of

IpCallControlManager, which enters the “Active” state, where

it expects requests from application logic. An application has

two options to declare its interest in events associated with a

particular call: register its callback interface via “enableCall-

Notification()” method or explicitly setting the address of the

callback interface on IpCallControlManager. This callback

interface will be used to deliver event or state information

(party busy, answer, no answer, etc.) to application logic. It is

possible for an application to invoke the method

“enableCallNotificaiton” several times with different value for

the callback interface – each time setting a new callback

interface. If the first one fails the next (in order of creation)

will be used to deliver event notifications.

Figure 2. Model of IpCallControlManager

Hristo E. Froloshki, Evelina N. Pencheva

 115

Each “enableCallNotificaiton” request sets an “assign-

mentID” – to identify the particular event(s) of interest.

Having set the callback interface, IpCallControlManager is

able to create a call object to represent an actual call taking

place in the underlying network. Each IpCall object is assign-

ned unique sessionID value and IpAppCallRef – address of a

callback interface to the application. IpCallControlManager

then returns to its “Active” state.

In case IpCallControlManager receives “resource Event”,

for a call monitored by a certain application, it invokes the

method “callEventNotify” on the address pointing the call-

back reference for IpAppCallControlManager. Exchanged

information consists mainly of reference to the object, repre-

senting the call and description of the event that occurred in

the underlying network.

Application which is no longer interested in certain event

invokes “DisableCallNotification()” method with parameter

“assignmentID”, in order to terminate monitoring of event in

question. IpCallControlManager responds with a transition

from “Active” into “NotificaitonTerminated” state.

Minimum requirements for IpCall interface include imple-

mentations of the following methods: routeReq(), release()

and deassignCall(). IpCall is created by IpCallControlMana-

ger, acting on behalf of an application. In its “Active” state

IpCall is able to receive some requests (superviseCallReq()

and setAdviceOfCharge()), which although executed do not

lead to change in state. SuperviseCallReq() method gives an

application the opportunity to set a predefined time interval

and supervise the call. Important parameters are callSession-

ID, time (duration) and treatment – defining how the under-

lying network should process the particular call after timer

expiration. SetAdviceOfCharge() method sends charging

information to terminals capable of interpreting it. Important

parameters for this method are: callSessionID and aOCInfo.

One of the methods causing state transition is “release()” –

if IpCall is in “Active” state, an application may invoke the

method and send the object in “Application released” state

(Figure 3.). If IpCall is subscribed for information regarding

the call (previously invoked getCallInfoReq or supervise-

CallReq) it needs to wait and forward it to IpAppCall object.

In case there is no information to for collection the IpCall

object is purged.

In another case the underlying network may trigger an

event (“Event From Network”), indicating that a call is

terminated by one of the calling parties. This makes IpCall

invoke “callEnded()” method on IpAppCall to inform the

application. If application is subscribed for additional call in-

fo, IpCall enters “Network Released State”, and waits for the

reports - when they arrive next state is “Finished” and “relea-

se()” or “deassignCall()” are legitimate methods for invocati-

on – both lead to the destruction of IpCall and related objects

for the particular call. The difference between these two

methods is in what happens to the actual call – “deassign-

Call()” is used when application is no longer interested in

controlling it, and frees resources at the OSA/Parlay gateway

(call remains in network). Release() causes both call and

controlling objects to be released by network and service

lifecycle manager respectively. State transition caused by

“release()” is possible between “Network released” and

“Application released” (not shown on the figure, due to space

limitations) – this may happen when call was released in

network, but controlling application waits for call-related

information to be sent (e.g. for charging purposes). This

model reflects the application (service) view of call control

functionality accessible through APIs. The main purpose of

the model is to hide network protocol complexity from appli-

cations.

In order to reflect the specificity of underlying network the

model has to be redefined as a specialization of generic func-

tionality. Some guidelines for considering network specificity

are given in the next section.

IV. GUIDELINES FOR REDEFINITION

OF CALL AGENT BEHAVIOR

The idea of a generic call agent model presented

encompasses common properties of call control. In terms of

SDL this model has to be defined as virtual type that can be

redefined in subtypes. The subtypes defined represent the

specific network functionality. For example, the part of the

model considering call routing is specific for circuit-switched

and packet-switched networks. In the model call routing is

presented by time delay. Actually the routeReq() transition is

virtual type transition that may be redefined and the routing

process has to be presented as a procedure. In case of circuit-

switched network the procedure includes exchange of Initial

Address message (IAM), Address Complete Message (ACM)

and Answer Message (ANM) between SCS implementing

ISUP and a switch [7]. The sending of routeRes() is triggered

by translation of ANM message (indicating that a

conversation between parties has begun). Application is

informed by the call agent (through routeRes() method) about

completing of routing and current call status.

V. CONCLUSION

We present a generic model of call control agent that can be

implemented in NGN. The synthesized model is based on

OSA APIs and reflects the call control functionality by the

application side. The model describes the call agent behavior

by means of methods provided by Call Control interface. The

model presents common functionality and hides the protocol

complexity of the underlying network. Some guidelines are

given to show how the model can be adapted to reflect the

network specificity. The full specification of the model

including its specializations can be used in implementing

OSA gateway.

Model of OSA / Parlay Gateway For Call Control

 116

Figure 3. Model of IpCall

REFERENCES

[1] E. S. Chaniotakis, A. E. Papadakis, “Parlay and Mobile Agents

in a Homogenized Service Provision”, 2nd European Conference on

Universal Multi-Service Networks, Conference Proceedings, pp 150-

154, Colmar, France, 2002

[2] ITU-T Rec. Q.1224, Distributed functional plane for intelligent

network Capability Set 2

[3] 3GPP TS 29.198-4-2 Open Service Access, Application

Programming Interface, Generic Call Control, v6.4.1

[4] 3GPP TS 29.198-4-3 Open Service Access, Application

Programming Interface, MultiParty Call Control, v6.4.1

[5] 3GPP TS 29.198-4-4 Open Service Access, Application

Programming Interface, MultiMedia Call Control, v6.4.1

[6] J. Zuidweg, Next Generation Intelligent Networks, Artech

House Inc., 2002

[7] http://www.pt.com/tutorials/ss7/isup.html

