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Evaluation of a Limited Multi-Server Queue with 

 a Generalized Poisson Input Stream* 

Seferin T. Mirtchev1 and Stanimir I. Statev2 

 

Abstract: This paper deals with M(g)/M/n/k/S queue in which 
we have generalized Poisson arrival process, exponential service 
time, multiple servers, limited waiting positions and finite num-
ber of customers. We use the generalized input Poisson stream 
that can be peaked, regular or smooth. The idea is based on the 
analytic continuation of the Poisson distribution and the classic 
delay systems. We apply techniques based on birth and death 
processes and state-dependent arrival rates. The influence of the 
peaked factor on the traffic characteristics is studied. It is shown 
that the input stream changes significantly the characteristics of 
the delay systems. 

Keywords: Queueing system, Poisson process, Peaked and 

smooth traffic 
 

I.  INTRODUCTION 

Many studies on traffic measurements from a variety of 

communication networks, like Ethernet local area networks 

(LANs) and wide area networks (WANs) with Internet and 

asynchronous transfer mode (ATM), etc., have shown consid-

erable difference between actual network traffic and assump-

tions in traditional theoretical traffic models. 

Problems with the Poisson modelling are predicted in 

[10]. The authors are indicating that some arrivals deviate 

considerably from the Poisson distribution but user-initiated 

TCP session arrivals, such as remote-login and file-transfer, 

are well-modelled as Poisson processes with fixed hourly 

rates. The Internet traffic characteristics are studied by Cao 

[1]. They have shown that the arrivals tend to Poisson and the 

packet sizes tend to independence when the number of simul-

taneous transport connections increase. 

Karagianis [6] believed that it is time to re-examine the 

Poisson traffic assumption in relation to the traffic carried 

within the Internet core. They have shown that the current 

network traffic can be well represented by the Poisson model 

for sub-second time scales. 
The traffic flows inside a network are not Poissonion in 

general [2,4]. For many real teletraffic systems the mean num-
ber of events in an interval is not equal to the variance. The 
offered streams are said to be peaked or smooth according to 
whether the variance is bigger or smaller than the mean value, 
respectively. 

The MMPP (Markov Modulated Poisson Process) traffic 
model that accurately approximates the long range dependence 
characteristics of Internet traffic traces is proposed in [9,11]. 
The Poisson Pareto Burst Process (PPBP) is presented in [12] 
as a simple and accurate model for aggregated Internet traffic. 
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Network analysis really requires a technique that can rep-
resent any kind of traffic, peaked or smooth, within the same 
model [5,8]. Most of the known methods are designed for a 
particular type of traffic, peaked or smooth, or, if they apply to 
both, do so using different models for different ranges of 
peakedness. The presented below method meets the above 
requirements. 

In this paper peaked and smooth input streams are de-
fined. They will be called a generalized Poisson process. A 
calculation method for the performance measures of a 
M(g)/M/n/k/S queue in witch we have generalized Poisson 
arrival process, exponential service time, multiple servers, 
limited waiting positions and finite number of customers is 
presented. The idea is based on the analytic continuation of 
the Poisson distribution and the classic M/M/n system. We 
apply techniques based on birth and death process and state-
dependent arrival rates. 

II.  GENERALIZED POISSON PROCESS 

The Poisson process is a pure birth process with an arri-

val rate λ independent of the system state. The probability 

Pi(t) of i arrivals in an interval witch duration is t seconds is 

given by 
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Two more parameters, peakedness factor p and number 

of sources S is introduced for the generalized Poisson process. 

The process is said to be peaked, regular or smooth according 

to whether p >1, p =1 or p <1, respectively. 
Calls arrive in a generalized Poisson stream at rate λi 

which depends on the number of calls in the system. The time 
between successive call arrivals is exponentially distributed 
with different parameter λi. This generalized Poisson stream 
has memoryless property. 

The arrival rate is state-dependent 
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The state probabilities Pi (t) in the case of a generalized 

Poisson process are 
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The mean value (the average number of arrivals in an in-

terval of length t) is 
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The variance of the number of arrivals in an interval of 

length t is 
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When p = 1 and S→∞, M(t) = λt and V(t) = λt i.e. it is a 

regular Poisson process. 

III. MULTI-SERVER QUEUE - MODEL DESCRIPTION 

Let us consider a multi server queue M(g)/M/n/k/S with a 

generalized Poisson input stream M(g), exponential service 

time M, number of servers n, limited waiting room k and 

number of sources S (S>k). This is a birth and death process 

and we can use the general solution, as given in [5], for the 

stationary probability of having j customers in the system 
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This generalized delay system may be described by se-

lecting the birth-death coefficient as follows 
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The arrival rate is state-dependent and depends on the 

peakedness factor p. This limited delay system is always er-

godic. The finite state-transition diagram is shown in Fig.1. 
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Fig. 1. A state-transition diagram - M(g)/M/n/k/S queue 

 

Applying these coefficients to the general solution of the 

birth and death process and using traffic intensity a = λ/µ we 

obtain the steady state probabilities 
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The offered traffic is calculated by means of the average 

arrival rate and the mean holding time 
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The carried traffic is equivalent to the average number of 

busy servers 
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IV.  GENERALIZED ERLANG DISTRIBUTION 

Assume that the number of the servers is equal to the 

number of the sources. In this case the system has not any 

losses and delay, the whole offered traffic is carried and it is 

called the intended traffic load. 

The stationary probability of having j customers in the 

system has generalized Erlang distribution 
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The intended traffic is the mean number of busy servers 
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The variance of the intended traffic is 
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The peakedness of the intended traffic is the variance to 

mean ratio 
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V. Mg/M/n/k/S – TRAFFIC CHARACTERISTICS 

BLOCKING PROBABILITY. The time congestion 

probability Bt describes the fraction of time that all waiting 

rooms are busy 

 knt PB += . (15) 

The call congestion probability Bc is ratio of lost traffic 

(offered minus carried traffic) to offered traffic 
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WAITING PROBABILITY. The waiting probability is 

denoted by P(>0) which means that the waiting time probabil-

ity is greater than 0 
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MEAN NUMBER OF CALLS. The mean number of 

calls present in the system in steady state by definition is 
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MEAN SYSTEM TIME. From the Little formula, we 

have the mean system time 
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WAITING TIME DISTRIBUTION. Let us assume the 

first-come-first-out (FIFO) discipline. The waiting time distri-

bution function P(>t’) is defined as the probability of waiting 

time exceeding t’. From the probability theory it is given by 
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An arbitrary call enters service when i calls are in the 

system Pi. Since the service time is exponentially distributed 

the probability that i calls terminate in time (0,t’] becomes a 

Poisson distribution with a mean value nµ t’ 
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The conditional probability Qi(>t’) that the arbitrary call 

has to wait longer than t’, given i calls in the system, is ex-

pressed by: 
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VI. STATE PROBABILITY CALCULATION 

The traffic intensity a is not equal to the intended traffic 

in a case of a generalized Erlang process because we calculate 

the power of the Erlang unsymmetrical distribution. That is 

why we have to calculate the intended traffic Ai and the 

peakedness z when defining the traffic intensity a and peaked-

ness factor p. 

From the practical point of view we first define the in-

tended traffic Ai and the peakedness z and after that calculate 

the traffic intensity a and peakedness factor p. 

A fundamental question about the system defined by Eqs. 

(11), (12) and (14) is whether there exist solutions a, p for an 

arbitrary Ai, z. Although no formal proof seems to exist, this 

seems to be the case and the solution appears to be unique. 

We can find solutions of the above system with the iterat-

ing method of consecutive replacements.  

VII.  NUMERICAL RESULTS 

In this section we give numerical results obtained by a 

Pascal program on a personal computer. The described meth-

ods were tested on a computer over a wide range of argu-

ments. 

Figure 2 shows the generalized Erlang distribution where 

the intended traffic is Ai = 10 erl, the number of the sources S 

= 100 and the peakedness z is change from 0.6 to 1.5. It will 

be seen that when the peakedness z increases the probability 

distribution becomes broad about the mean. 
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Fig. 2. Generalized Erlang distribution 

Figures 3 and 4 illustrate the stationary probability dis-

tribution in a multi-server queue M(g)/M/n/k/S with a general-

ized Poisson input stream, 10 servers, 30 waiting rooms, 100 

sources and different intended traffic Ai and peakedness z. It 

will be seen that when the utilization is from 0.9 to 1 erl and 

the peakedness is bigger than one the probabilities increase 

when the number of the customers in the system increases.  

Figures 5 and 6 show the call and time congestion prob-

abilities in a multiple delay system with 10 servers, 100 

sources, 0.9 erl intended traffic and different peakedness as 

function of the buffer size. When the utilization is high (0.9 - 1 

erl) and the input stream is peaked (z = 1.05 – 1.2) the influ-

ence of the buffer size of the congestion probability is negligi-

ble. We have to notice that the offered traffic is bigger than 

intended in the M(g)/M/n/k/S queue when the input stream is 

peaked.  
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Fig. 3. Stationary probability distribution 
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Fig. 4. Stationary probability distribution 
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Fig. 5. Call congestion probability 
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Fig. 6. Time congestion probability 
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Figure 7 presents the normalized mean system time (W' 

= W/τ) as function of the intended traffic when the number of 

servers is 10, the number of sources is 100, the peakedness is 

0.9 and 1.1 respectively and different waiting room. 
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Fig. 7. Normalized mean system time 

Figure 8 illustrates the waiting time distribution as func-

tion of the normalized waiting time when the number of serv-

ers is 10, the number of sources is 100, the buffer size is 30, 

the peakedness is 0.9 and 1.1 respectively and different in-

tended traffic. 

VIII.  CONCLUSIONS 

In this paper a generalized Poisson process is introduced 

and evaluated. A basic model for a queueing system 

Mg/M/n/k/S is examined in detail. 

The proposed method provides a unified framework to 

model peaked and smooth traffic. Numerical results and sub-

sequent experience have shown that this method is accurate 

and useful in both analyses and simulations of teletraffic sys-

tems. 

The importance of a multiple delay system in a case of a 

generalized Poisson input stream comes from its ability to 

describe behaviour that is to be found in more complex real 

queueing systems. It is the case in a general traffic system, 

which is an important feature in designing telecommunication 

systems. 

It is shown that the influence of the peakedness over the 

performance measures is significant. 

In conclusion, we believe that the presented generalized 

Poisson process and queueing system will be useful in prac-

tice. As part of future work, we plan to analyzed a processor 

sharing system with a generalized Poisson input stream. 
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Fig. 8. Waiting time distribution  
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