
29 June – 1 July 2006, Sofia, Bulgaria

132

Abstract — The paper consider tools for calculating autocorre-

lation spectrum by using the Wiener-Kinchin theorem. The first

tool calculates autocorrelation spectrum implemented over

matrices, the second tool use fast Walsh transform over matrices

and the third tool calculates autocorrelation spectrum imple-

mented over decision diagrams. Then, I discussed “LGSynth93

benchmark” testing statistics for each tool and tool’s efficiency.

Also, I analyzed time and space complexity for each tool,

especially for tool which use calculations over the decision

diagrams.

Keywords — Switching functions, Autocorrelation spectrum,

Wiener-Kinchin theorem, decision diagrams, software tools..

I. INTRODUCTION

Much work has been performed in applying transforms to

switching functions in order to achieve a more global view of

the function. Transforms such as the Walsh and their applica-

tions in digital logic are well researched [6]. Also, there is a

lot of software support. There is far less work, however, on the

use of other transforms such as the autocorrelation transform

[7].
1

An alternative view of the switching function is the auto-

correlation spectrum (all autocorrelation coefficients) of a

function. The autocorrelation coefficients of a function are

calculated using the autocorrelation function. They provide the

measure of the function’s similarity to itself, shifted by given

amount, Eq. (1).

The autocorrelation coefficients have been used in various

areas including optimization and synthesis of combinational

logic [1], [4], [5], variable ordering for decision diagrams [2]

and compute the estimate)(fC of a function’s complexity

[3], [1].

However, their use has been limited, likely due to the fact

that until recently, methods for computing the autocorrelation

coefficients were exponential in the number of inputs to the

function(s). Since new methods for their computation have

recently been introduced by Rice [8], [9], and by Stanković

[10], I also have performed an investigation into development

of software tools for calculating autocorrelation coefficients

(spectrum) for Boolean function

In this paper I present the definition, explanation and

software tools for calculating autocorrelation spectrum by

using the Wiener-Kinchin theorem. The first tool calculates

autocorrelation spectrum through matrix multiplication, the

second tool use fast Walsh transform and the third tool

1 Miloš M. Radmanović is with the Faculty of Electronics, University of

Niš, Aleksandra lmedvedova 14, 18000 Niš, Serbia and Montenegro, e-mail:

milos@elfak.ni.ac.yu

calculates autocorrelation spectrum through decision diag-

rams. Then, I discussed “LGSynth93 benchmark” [11] testing

space and time complexity statistics for each tool and tool’s

efficiency.

II. AUTOCORRELATION OF SWITCHING FUNCTIONS

The general cross-correlation (convolution) between two

functions f and g at a distance τ is defined as:

∑
−

=

⊕⋅

12

0

)()(

n

x

xgxf τ (1)

for two functions)(Xf and)(Xg where 11 xxxX nn K
−

= .

The symbol ⊕ represents the bitwise exclusive-or function

and the symbol ⋅ represents arithmetic multiplication

function. When gf = , the resulting equation gives the cross-

correlation of the function with itself, translated by τ . The

resulting coefficients are referred to as the autocorrelation

coefficients of the function

The autocorrelation function is defined as follows:

∑
−

=

⊕⋅=

12

0

)()()(

n

x

xfxfB ττ (2)

where function is)(Xf , 11 xxxX nn K
−

= , ∑
=

−
=

n

i

i

ixx
1

1
2 ,

∑
=

−
=

n

i

i

i

1

1
2ττ and n is number of inputs [3].

For multiple output functions a second step must be

performed to combine the autocorrelation function for each of

the individual functions into the total autocorrelation function

is defined as:

∑ ∑∑
−

=

−

=

−

=

⊕⋅==

1

0

1

0

12

0

)()()()(
m

i

m

i x

i

n

xfxfmBB ττ (3)

where m is the number of outputs and the multiple output

function F consists of 110 −mfff K .

III. WIENER-KHINCHIN THEOREM

The Wiener-Khinchin theorem states a relationship between

the autocorrelation function and the Walsh (Fourier)

coefficients [12].

21)(2 WfWB n

f

−−
= (4)

Tools for Calculating Autocorrelation Spectrum by

Using The Wiener-Khinchin Theorem

Miloš M. Radmanović

Miloš M. Radmanović

 133

where W denote the Walsh transform operator and 1−W

denote the inverse Walsh transform operator.

An example of calculating the autocorrelation spectrum

using Wiener-Kinchin theorem through matrix multiplication

for the function 2121),(xxxxf += is shown in the following

equations:

22))2()(2(2 FWWB f

−
= (5)



















=

























































−

−−

−−



















−

−−

−−
=

2

2

2

3

1

1

1

0

1111

1111

1111

1111

1111

1111

1111

1111

4

1

2

fB (6)

Calculations in determination of the Walsh spectrum can be

performed through the flow-graph describing the fast Walsh

transform [13]. An example of calculating the autocorrelation

spectrum using Wiener-Kinchin theorem through fast Walsh

transform for the function 2121),(xxxxf += is shown in the

following equations:

1

1

1

0

 →
transform
Walsh
fast

1

1

1

3

−
 →

sqare

1

1

1

9

 →
transform
Walsh
fast

8

8

8

12

→
4/1

2

2

2

3

 (7)

Calculations in determination of the Walsh spectrum can be

performed through fast Walsh transform over decision

diagram [10]. An example of calculating the autocorrelation

spectrum using Wiener-Kinchin theorem through fast Walsh

transform and decision diagrams for the function

2121),(xxxxf += is shown in the following figure:

IV. SOFTWARE TOOLS

My applications (software tools) are written in Microsoft

Visual Studio [14] and use MFC technology.

The first software tool for calculating the autocorrelation

spectrum using Wiener-Kinchin theorem through matrix

multiplication uses dynamic arrays of arrays as data structure

for storing true vector and Walsh transform matrix. Because

autocorrelation coefficient can be number between 0 and

12 −
n , it is used 64-bit integer data type for storing autocorre-

lation spectrum. Using calculating the autocorrelation

spectrum by Wiener-Kinchin theorem for a function requires

)2(2nO operations (multiplication and summing) on dynamic

arrays, where n is number of inputs Eq. (5) and (6).

Using another data structures and methods requires

significantly less operations for calculating the autocorrelation

spectrum

The second software tool for calculating the autocorrelation

spectrum using Wiener-Kinchin theorem through fast Walsh

transform over vectors uses dynamic arrays as data structure

for storing true vector. This tool uses much less memory then

first software tool. The tool uses only one 64-bit integer array

and it don’t produce any temporary arrays. Using calculating

the autocorrelation spectrum by Kinchin theorem for a

function requires)2(nnO operations (multiplication and

summing) on dynamic arrays, where n is number of inputs

Eq. (7). Using decision diagrams as data structure and DD

method requires significantly less operations in some cases of

calculating the autocorrelation spectrum.

The third software tool for calculating the autocorrelation

spectrum using Wiener-Kinchin theorem through fast Walsh

transform over decision diagrams uses special case of linked

lists as data structure. The tool was develop following basic

programming principles for DD packages [15]. Every DD

package use an imperative programming language like C++,

nodes are class structures that contain a variable identifier and

“then” and “else” children pointers; a “next” pointer strings

nodes together that belong to the same collision chain in the

unique table, recycling of nodes is easily implemented by

keeping a reference count for each node. Using calculating the

autocorrelation spectrum by Kinchin theorem for a function

requires)()()()(lOkOjOiO +++ operations (multiplication

and summing linked lists) on special case of linked lists, where

i is number of nodes of initial DD, l is number of nodes of

temporary DD (after first Walsh transform), k is number of

nodes of temporary DD (after squaring) and l is number of

nodes of resulting DD (after second Walsh transform), (see

figure 1).

0 1

2x

1x

 →
transform
Walsh
fast

1

2x

1x

1−3
 →

sqare

9 1

2x

1x

 →
transform
Walsh
fast

12 8

2x

1x

→
4/1 3 2

2x

1x

Fig. 1. An example of calculating the autocorrelation spectrum using

Wiener-Kinchin theorem through fast Walsh transform and decision

diagrams

V. TESTS AND RESULTS

Below I give a lists and tables of different tools testing

statistics. I performed the testing on a PC Pentium IV on 1,4

GHz with 224 MB of RAM (MS Windows XP Professional

2002). The memory usage for all tools was limited to 150 MB,

and timing statistics do not include building and storing data

structures for functions (arrays of arrays, arrays and linked

lists). I have tasted tools with “LGSynth93 benchmark”, and I

Tools for Calculating Autocorrelation Spectrum by Using The Wiener-Khinchin Theorem

 134

used input files described in ESPRESSO-MV (or pla) format

[16].

LGSynth93 benchmark suites is based on the collection of

benchmarks from the ISCAS85, ISCAS86 and LGSynth91.

testing space and time complexity statistics for each tool and

tool’s efficiency. The benchmarks then have been categorized

in three categories: small benchmarks, medium sized

benchmarks (and too-large benchmarks. This allows to judge

the quality of tools and gives a better overview of the existing

benchmarks. Descriptions and properties of switching

functions from LGSynth benchmark suite are given in tables 1,

2 and 3.

Table 4 describes tool efficiency statistics and it shows that

most efficient tool is third tool that use fast Walsh transform

through array. But, for too-large benchmarks, neither tool is

efficient (25% isn’t enough).

Table 5 describes average time over all benchmarks and it

shows that best average time for small and medium sized

benchmark has third tool. It is expected, because the

calculation time is direct proportional to tool’s space

(memory) request.

Table 6 describes tool maximal space statistics (number of

elements in arrays) and it shows that first tool for medium

sized benchmark require almost 2^50*32 bit = 4096 TB and

for too-large benchmark 268435456 TB of memory. It is

expected; because the space is exponential proportional to

function’s number of inputs.

Table 7 describes third tool space statistics (number of

decision diagram nodes) and shows that we can not calculate

space limit and dependency. In most cases, it is shown that

lkji ~~~ , but functions like cps ond apex5 shows that

ji << . Functions: alu4, table3, misex3c and misex3 shows

that li << . Meanwhile, all functions shown that kj ~ . If it is

possible. to calculate Walsh spectrum over DD, there is high

probability for calculation of autocorrelation spectrum.

TABLE VI

MAX SPACE STATISTICS (ELEMENTS OF ARRAY)

Tool
Small

benchmarks

Medium sized

benchmarks

Too-Large

banchmarks

first. tool ~2^34 ~2^50 ~2^130

second tool ~2^17 ~2^25 ~2^65

TABLE V

AVERAGE TIME STATISTICS

Tool
Small

benchmarks

Medium sized

benchmarks

Too-Large

banchmarks

first. tool 46.863 - -

second tool 1.667 740.797 -

third tool 1.273 0.741 66.561

TABLE IV

TOOL EFFICIENCY STATISTICS

Tool
Small

benchmarks

Medium sized

benchmarks

Too-Large

banchmarks

first. tool 87% 0% 0%

second tool 100% 60% 0%

third tool 100% 100% 25%

TABLE III

LGSYNTH93 TOO-LARGE BENCHMARKS

Name
Number

of inputs

Number.

of outputs

Number

of cubes

apex2 39 3 1035

seq 41 35 1459

apex1 45 45 206

apex3 54 50 280

e64 65 65 65

apex5 117 88 1227

ex4p 128 28 620

o64 130 1 65

TABLE II

LGSYNTH93 MEDIUM SIZED BENCHMARKS

Name
Number

of inputs

Number.

of outputs

Number

of cubes

duke2 22 29 87

cordic 23 2 1206

cps 24 109 654

vg2 25 8 110

misex2 25 18 29

TABLE I

LGSYNTH93 SMALL BENCHMARKS

Name
Number

of inputs

Number.

of outputs

Number

of cubes

xor5 5 1 16

rd53 5 3 32

squar5 5 8 32

bw 5 28 87

con1 7 2 9

rd73 7 3 141

inc 7 9 34

5xp1 7 10 75

sqrt8 8 4 40

rd84 8 4 256

misex1 8 7 32

9sym 9 1 87

clip 9 5 167

apex4 9 19 438

sao2 10 4 58

ex1010 10 10 1024

alu4 14 8 1028

table3 14 14 175

misex3c 14 14 305

misex3 14 14 1848

b12 15 9 431

t481 16 1 481

pdc 16 40 2810

spla 16 46 2307

table5 17 15 158

Miloš M. Radmanović

 135

VI. CONCLUSION

In this paper I present software tools for calculating

autocorrelation spectrum by using the Wiener-Kinchin

theorem. The first tool calculates autocorrelation spectrum

through matrix multiplication, the second tool use fast Walsh

transform and the third tool calculates autocorrelation

spectrum through decision diagrams. Then, I presented

“LGSynth93 benchmark” testing statistics (efficiency, time,

space) for each tool. Third DD-based tool has best results over

all benchmarks, but for too-large benchmarks, tool require

further work to optimize in terms of memory.

ACKNOWLEDGMENT

This research work was based on a scholarship of The

German Academic Exchange Service (DAAD) under the

Stability Pact for South-East Europe.

REFERENCES

[1] Tomczuk, R., “Autocorrelation and Decomposition Methods in

Combinational Logic Design”, 1996, PhD dissertation.

[2] Rice, J.E., Serra, M., Muzio, J.C., “The Use of Autocorrelation

Coefficient for Variable Ordering for ROBDDs”, Proc. 4th Int.

Workshop on Applications of Reed-Muller Expansion in Circuit

Design, Victoria, Canada, August 20-21, 1999, 185-196.

[3] Karpovsky M.G., “Finite Orthogonal Series in the Design of

Digital Devices”, John Wiley 1976.

[4] Ruce, J.E., Muzio, J.C., “The Use of Autocorrelation Function

in Classification of Switching Functions”, In. Euromicro

Symposium on Digital System Design: Architectures, Methods

and Tools (DSD), pages 244-251, 2002.

[5] Ruce, J.E., Muzio, J.C., “On The Use of Autocorrelation

Coefficients in The Identification of Three-level

Decompositions”, Proc. Int. Workshop on Logic Synthesis,

(IWLS 2003), 2003.

[6] S. L. Hurst, D. M. Miller, and J. C. Muzio, “Spectral

Techniques in Digital Logic”, Orlando, Florida: Academic

Press, Inc., 1985.

[7] Rice, J.E., Muzio, J.C., “Properties of Autocorrelation

Coefficients", Proc. IEEE Pacific Rim Conf. on

Communications, Computers and Signal Processing, 2003.

[8] Rice, J.E., Muzio, J.C., “Methods for Calculating

Autocorrelation Coefficients”, In Proceedings of the 4th

Workshop on Boolean problems, pages 69-76, 2000.

[9] Rice, J.E. “Autocorrelation Coefficients in the Represen-tation

and Classification of Switching Functions”, PhD thesis,

University of Victoria, 2003.

[10] Stanković, R., S., Bhattacharaya, M., Astola, J., T., “Calulation

of Dyadic Autocorrelation through Decision Diagrams”, Proc.

European Conf. Circuit Theory and Design, pp. 337-340, 2001.

[11] “The LGSynth93 Benchmark Suit”, Available:

http://www.bdd-portal.org/benchmarks/LGSynth93.tar.gz.

[12] Pichler F., “Walsh Functions and Linear System Theory“, Proc.

Applic. Walsh Functions, Washington, D.C., 1970, 175-182.

[13] Clarke, E., M., McMillan, K.L., Zhao, X., Fujita, M., “Spectral

Transforms for Extremely Large Boolean Functions in

Kebaschull”, U., Schubert, E., Rosenstiel, W., Eds., Proc. IFIP

WG 10.5 Workshop on App. of the RM Expression in circuit

Design, Humburg, Germany, September 16-17, 1993, 86-90.

[14] Microsoft Corporation, Available:

www.microsoft.com

[15] Jansen G. “Design of Pointerless BDD Package” inite”, 10th

Worshop on Logic and Synthesis Granlibakken, Lake Tahoe,

CA, 12-15, 2001.

[16] Lisanke, R., “Logic Synthesis and Optimization Benchmarks

User Guide” Version 2.0, 1988.

TABLE VII

SPACE STATISTICS (NUMBER OF DD NODES)

FOR THIRD TOOL

Name
i (initial

DD.)

j (after 1.

Walsh

T..)

k (after .

squaring.)

l (after

2. Walsh

T.)

xor5 9 5 5 9

rd53 23 34 29 29

squar5 38 83 56 58

bw 114 330 236 253

con1 18 76 50 30

rd73 43 57 44 51

inc 89 371 280 209

5xp1 88 297 208 237

sqrt8 42 123 75 126

rd84 59 88 48 55

misex1 47 276 159 88

9sym 33 39 39 37

clip 254 529 326 539

apex4 1021 4836 3979 4595

sao2 154 481 394 472

ex1010 1079 6281 5292 5696

alu4 1352 6195 4351 15364

table3 941 41652 33660 40295

misex3c 847 9189 6851 16077

misex3 1301 18364 13009 55520

b12 91 651 492 151

t481 32 184 60 60

pdc 705 10717 6457 3826

spla 681 8785 5480 3545

table5 873 89589 75130 48959

duke2 976 6581 4590 5273

cordic 80 646 491 463

cps 2318 15420 8292 5339

vg2 1059 3793 3096 6563

misex2 140 1311 844 139

apex2 7102 - - -

seq 142321 - - -

apex1 28414 - - -

apex3 - - - -

e64 1446 6853 5473 2144

apex5 2705 74258 31269 4634

ex4p 1301 - - -

o64 - - - -

