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Abstract — The paper consider tools for calculating autocorre-

lation spectrum by using the Wiener-Kinchin theorem. The first 

tool calculates autocorrelation spectrum implemented over 

matrices, the second tool use fast Walsh transform over matrices 

and the third tool calculates autocorrelation spectrum imple-

mented over decision diagrams. Then, I discussed “LGSynth93 

benchmark” testing statistics for each tool and tool’s efficiency. 

Also, I analyzed time and space complexity for each tool, 

especially for tool which use calculations over the decision 

diagrams.     
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I. INTRODUCTION 

Much work has been performed in applying transforms to 

switching functions in order to achieve a more global view of 

the function. Transforms such as the Walsh and their applica-

tions in digital logic are well researched [6]. Also, there is a 

lot of software support. There is far less work, however, on the 

use of other transforms such as the autocorrelation transform 

[7].
1
   

An alternative view of the switching function is the auto-

correlation spectrum (all autocorrelation coefficients) of a 

function. The autocorrelation coefficients of a function are 

calculated using the autocorrelation function. They provide the 

measure of the function’s similarity to itself, shifted by given 

amount, Eq. (1).   

The autocorrelation coefficients have been used in various 

areas including optimization and synthesis of combinational 

logic [1], [4], [5], variable ordering for decision diagrams [2] 

and compute the estimate )( fC  of a function’s complexity 

[3], [1].   

However, their use has been limited, likely due to the fact 

that until recently, methods for computing the autocorrelation 

coefficients were exponential in the number of inputs to the 

function(s). Since new methods for their computation have 

recently been introduced by Rice [8], [9], and by Stanković 

[10], I also have performed an investigation into development 

of software tools for calculating autocorrelation coefficients 

(spectrum) for Boolean function  

In this paper I present the definition, explanation and 

software tools for calculating autocorrelation spectrum by 

using the Wiener-Kinchin theorem. The first tool calculates 

autocorrelation spectrum through matrix multiplication, the 

second tool use fast Walsh transform and the third tool 
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calculates autocorrelation spectrum through decision diag-

rams. Then, I discussed “LGSynth93 benchmark” [11] testing 

space and time complexity statistics for each tool and tool’s 

efficiency.  

II. AUTOCORRELATION OF SWITCHING FUNCTIONS 

The general cross-correlation (convolution) between two 

functions f  and g  at a distance τ  is defined as: 
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The symbol ⊕  represents the bitwise exclusive-or function 

and the symbol ⋅  represents arithmetic multiplication 

function. When gf = , the resulting equation gives the cross-

correlation of the function with itself, translated by τ . The 

resulting coefficients are referred to as the autocorrelation 

coefficients of the function  

The autocorrelation function is defined as follows: 
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For multiple output functions a second step must be 

performed to combine the autocorrelation function for each of 

the individual functions into the total autocorrelation function 

is defined as: 
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where m  is the number of outputs and the multiple output 

function F  consists of  110 −mfff K . 

III. WIENER-KHINCHIN THEOREM 

The Wiener-Khinchin theorem states a relationship between 

the autocorrelation function and the Walsh (Fourier) 

coefficients [12]. 
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where W  denote the Walsh transform operator and 1−W  

denote the inverse Walsh transform operator.  

An example of calculating the autocorrelation spectrum 

using Wiener-Kinchin theorem through matrix multiplication 

for the function 2121 ),( xxxxf +=  is shown in the following 

equations: 
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Calculations in determination of the Walsh spectrum can be 

performed through the flow-graph describing the fast Walsh 

transform [13]. An example of calculating the autocorrelation 

spectrum using Wiener-Kinchin theorem through fast Walsh 

transform for the function 2121 ),( xxxxf +=  is shown in the 

following equations: 
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Calculations in determination of the Walsh spectrum can be 

performed through fast Walsh transform over decision 

diagram [10]. An example of calculating the autocorrelation 

spectrum using Wiener-Kinchin theorem through fast Walsh 

transform and decision diagrams for the function 

2121 ),( xxxxf +=  is shown in the following figure: 

IV. SOFTWARE TOOLS 

My applications (software tools) are written in Microsoft 

Visual Studio [14] and use MFC technology.  

The first software tool for calculating the autocorrelation 

spectrum using Wiener-Kinchin theorem through matrix 

multiplication uses dynamic arrays of arrays as data structure 

for storing true vector and Walsh transform matrix. Because 

autocorrelation coefficient can be number between 0  and 

12 −
n , it is used 64-bit integer data type for storing autocorre-

lation spectrum. Using calculating the autocorrelation 

spectrum by Wiener-Kinchin theorem for a function requires 

)2( 2nO  operations (multiplication and summing) on dynamic 

arrays, where n  is number of inputs Eq. (5) and (6). 

Using another data structures and methods requires 

significantly less operations for calculating the autocorrelation 

spectrum  

The second software tool for calculating the autocorrelation 

spectrum using Wiener-Kinchin theorem through fast Walsh 

transform over vectors uses dynamic arrays as data structure 

for storing true vector. This tool uses much less memory then 

first software tool. The tool uses only one 64-bit integer array 

and it don’t produce any temporary arrays. Using calculating 

the autocorrelation spectrum by Kinchin theorem for a 

function requires )2( nnO  operations (multiplication and 

summing) on dynamic arrays, where n  is number of inputs  

Eq. (7). Using decision diagrams as data structure and DD 

method requires significantly less operations in some cases of 

calculating the autocorrelation spectrum.   

The third software tool for calculating the autocorrelation 

spectrum using Wiener-Kinchin theorem through fast Walsh 

transform over decision diagrams uses special case of linked 

lists as data structure. The tool was develop following basic 

programming principles for DD packages [15]. Every DD 

package use an imperative programming language like C++,  

nodes are class structures that contain a variable identifier and 

“then” and “else” children pointers; a “next” pointer strings 

nodes together that belong to the same collision chain in the 

unique table, recycling of nodes is easily implemented by 

keeping a reference count for each node. Using calculating the 

autocorrelation spectrum by Kinchin theorem for a function 

requires )()()()( lOkOjOiO +++  operations (multiplication 

and summing linked lists) on special case of linked lists, where 

i  is number of nodes of initial DD, l  is number of nodes of 

temporary DD (after first Walsh transform), k  is number of 

nodes of temporary DD (after squaring) and l  is number of 

nodes of resulting DD (after second Walsh transform), (see 

figure 1).   
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Fig. 1.  An example of calculating the autocorrelation spectrum using 

Wiener-Kinchin theorem through fast Walsh transform and decision 

diagrams 

V. TESTS AND RESULTS 

Below I give a lists and tables of different tools testing 

statistics. I performed the testing on a PC Pentium IV on 1,4 

GHz with 224 MB of RAM (MS Windows XP Professional 

2002). The memory usage for all tools was limited to 150 MB, 

and timing statistics do not include building and storing data 

structures for functions (arrays of arrays, arrays and linked 

lists). I have tasted tools with “LGSynth93 benchmark”, and I 
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used input files described in ESPRESSO-MV (or pla) format 

[16]. 

LGSynth93 benchmark suites is based on the collection of 

benchmarks from the ISCAS85, ISCAS86 and LGSynth91. 

testing space and time complexity statistics for each tool and 

tool’s efficiency. The benchmarks then have been categorized 

in three categories: small benchmarks, medium sized 

benchmarks (and too-large benchmarks. This allows to judge 

the quality of tools and gives a better overview of the existing 

benchmarks. Descriptions and properties of switching 

functions from LGSynth benchmark suite are given in tables 1, 

2 and 3. 

Table 4 describes tool efficiency statistics and it shows that 

most efficient tool is third tool that use fast Walsh transform 

through array. But, for too-large benchmarks, neither tool is 

efficient (25% isn’t enough).  

  

 

Table 5 describes average time over all benchmarks and it 

shows that best average time for small and medium sized 

 

 

 

 

 

 

 

 

 

 

benchmark has third tool. It is expected, because the 

calculation time is direct proportional to tool’s space 

(memory) request.  

Table 6 describes tool maximal space statistics (number of 

elements in arrays) and it shows that first tool for medium 

sized benchmark require almost 2^50*32 bit = 4096 TB and 

for too-large benchmark 268435456 TB of memory. It is 

expected; because the space is exponential proportional to 

function’s number of inputs.  

Table 7 describes third tool space statistics (number of 

decision diagram nodes) and shows that we can not calculate 

space limit and dependency. In most cases, it is shown that 

lkji ~~~ , but functions like cps ond apex5 shows that 

ji << . Functions: alu4, table3, misex3c and misex3 shows 

that li << . Meanwhile, all functions shown that kj ~ . If it is 

possible. to calculate Walsh spectrum over DD, there is high 

probability for calculation of autocorrelation spectrum.   

TABLE VI 

MAX SPACE STATISTICS (ELEMENTS OF ARRAY) 

Tool 
Small 

benchmarks 

Medium sized 

benchmarks 

Too-Large 

banchmarks 

first. tool ~2^34 ~2^50 ~2^130 

second tool ~2^17 ~2^25 ~2^65 

 

TABLE V 

AVERAGE TIME STATISTICS 

Tool 
Small 

benchmarks 

Medium sized 

benchmarks 

Too-Large 

banchmarks 

first. tool 46.863 - - 

second tool 1.667 740.797 - 

third tool 1.273 0.741 66.561 

 

TABLE IV 

TOOL EFFICIENCY STATISTICS 

Tool 
Small 

benchmarks 

Medium sized 

benchmarks 

Too-Large 

banchmarks 

first. tool 87% 0% 0% 

second tool 100% 60% 0% 

third tool 100% 100% 25% 

TABLE III 

LGSYNTH93 TOO-LARGE  BENCHMARKS 

Name 
Number 

of inputs 

Number. 

of outputs 

Number 

of cubes 

apex2 39 3 1035 

seq 41 35 1459 

apex1 45 45 206 

apex3 54 50 280 

e64 65 65 65 

apex5 117 88 1227 

ex4p 128 28 620 

o64 130 1 65 

TABLE II 

LGSYNTH93 MEDIUM SIZED BENCHMARKS 

Name 
Number 

of inputs 

Number. 

of outputs 

Number 

of cubes 

duke2 22 29 87 

cordic 23 2 1206 

cps 24 109 654 

vg2 25 8 110 

misex2 25 18 29 

 

TABLE I 

LGSYNTH93 SMALL BENCHMARKS 

Name 
Number 

of inputs 

Number. 

of outputs 

Number 

of cubes 

xor5 5 1 16 

rd53 5 3 32 

squar5 5 8 32 

bw 5 28 87 

con1 7 2 9 

rd73 7 3 141 

inc 7 9 34 

5xp1 7 10 75 

sqrt8 8 4 40 

rd84 8 4 256 

misex1 8 7 32 

9sym 9 1 87 

clip 9 5 167 

apex4 9 19 438 

sao2 10 4 58 

ex1010 10 10 1024 

alu4 14 8 1028 

table3 14 14 175 

misex3c 14 14 305 

misex3 14 14 1848 

b12 15 9 431 

t481 16 1 481 

pdc 16 40 2810 

spla 16 46 2307 

table5 17 15 158 
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VI. CONCLUSION 

In this paper I present software tools for calculating 

autocorrelation spectrum by using the Wiener-Kinchin 

theorem. The first tool calculates autocorrelation spectrum 

through matrix multiplication, the second tool use fast Walsh 

transform and the third tool calculates autocorrelation 

spectrum through decision diagrams. Then, I presented 

“LGSynth93 benchmark” testing statistics (efficiency, time, 

space) for each tool. Third DD-based tool has best results over 

all benchmarks, but for too-large benchmarks, tool require 

further work to optimize in terms of memory.  
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TABLE VII 

SPACE STATISTICS (NUMBER OF DD NODES)  

FOR THIRD TOOL 

Name 
i (initial 

DD.)  

j (after  1. 

Walsh 

T..) 

k (after . 

squaring.) 

l (after 

2. Walsh 

T.) 

xor5 9 5 5 9 

rd53 23 34 29 29 

squar5 38 83 56 58 

bw 114 330 236 253 

con1 18 76 50 30 

rd73 43 57 44 51 

inc 89 371 280 209 

5xp1 88 297 208 237 

sqrt8 42 123 75 126 

rd84 59 88 48 55 

misex1 47 276 159 88 

9sym 33 39 39 37 

clip 254 529 326 539 

apex4 1021 4836 3979 4595 

sao2 154 481 394 472 

ex1010 1079 6281 5292 5696 

alu4 1352 6195 4351 15364 

table3 941 41652 33660 40295 

misex3c 847 9189 6851 16077 

misex3 1301 18364 13009 55520 

b12 91 651 492 151 

t481 32 184 60 60 

pdc 705 10717 6457 3826 

spla 681 8785 5480 3545 

table5 873 89589 75130 48959 

duke2 976 6581 4590 5273 

cordic 80 646 491 463 

cps 2318 15420 8292 5339 

vg2 1059 3793 3096 6563 

misex2 140 1311 844 139 

apex2 7102 - - - 

seq 142321 - - - 

apex1 28414 - - - 

apex3 - - - - 

e64 1446 6853 5473 2144 

apex5 2705 74258 31269 4634 

ex4p 1301 - - - 

o64 - - - - 

 


