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Abstract - An application of Hausdorff approximation in the 

modern theory of electrical filters design is shown in the paper. A 

translated Hausdorff polynomial is defined, which leads to 

realizable transmission functions of electrical filters. 

Transmission functions of Hausdorff low-pass filter-prototype 

and two types of inverse Hausdorff filters are shown. Their 

frequency characteristics are analyzed. 
Keywords - Approximation, Polynomial, Design, Inverse 

filter, Hausdorff, Chebyshev, Magnitude response. 

I. INTRODUCTION 

In modern filter theory the synthesis is performed by 

appropriate characteristic function (Fig.1) approximation. 
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Fig. 1. Characteristic function  

 

The most popular approximations are the canonical – equal-

ripple in pass-band (Chebyshev I, Cauer) and maximum-flat 

in pass-band (Butterworth, Hourglass, Chebyshev II). Another 

approximations with intermediate properties also exist. Such 

approximations are of Bessel, Legendre and Gauss. 

On Fig. 2 and Fig. 3 amplitude responses and phase respon-

ses of filters obtained by mentioned approximations are shown. 

 

Fig. 2. Comparison of magnitude responses [dB] 

 
Fig. 3. Comparison of phase responses [deg] 

 

As can be seen, the filters, as linear electrical circuits, have 

contradictory behaviour. Those with better selectivity 

(Chebyshev I and Cauer) have non-linear phase-responses and 

vice versa - those with worse selectivity (Gauss, Bessel, 

Butterworth) have more linear phase responses. The 

Chebyshev’s II filters combine better selectivity and 

acceptable linearity of phase response. 

The advance of the digitalization in the last years is a 

motivation for finding new approximations, which lead to 

decreased distortions of digital signal processing. A step in 

this direction is the approximation in Hausdorff metric. 

II. APPROXIMATION IN HAUSDORFF METRIC. 

FORMATION OF TRANSMISSION FUNCTION OF 

HAUSDORFF LOW-PAS FILTER PROTOTYPE 

The Bulgarian Academy of Science (BAS) conducted a 

research of ε -entropy of the space, a new approximation in 

Hausdorff metric [5] is offered in the eighties. The theoretical 

results of this work were successfully applied in an antenna 

array design for the Technical University of Sofia [2] and in 

the transmission functions direct synthesis of digital filters in 

BAS [3]. In the theory, an algebraic polynomial 

accomplishing the best approximation of “shifted” delta 

function in Hausdorff metric is offered 
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where ε  is Hausdorff distance, Tn  is Chebyshev’s polyno-

mial of first kind and n  degree; α  is a parameter, and the 

factor (product) αε  determines the  bandwidth in which the 

polynomial approximates the “shifted” delta function in point 
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1, where it has infinitive steepness (Fig. 4). Тhe relations 

between polynomial parameters [1] are defined by equation  
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Fig. 4. Approximation with Hausdorff polynomial  

As seen on the figure the Hausdorff polynomial appro-

ximates function with outline of filter characteristic function 

(Fig. 1). The pass-band is determined in the interval [ ]0,1 αε− , 

stop-band in the interval ( )1 ,αε− ∞ . Considering Eq. (1) and 

Fig.4 in the defined area the following inequalities  (InEq) are 

valid: 

 0 1ε< < ; 0 1αε< < . (3) 

The representation of the polynomial as a rational function 

of its argument can be determined by the coefficients of the 

Chebyshev’s polynomial. A fifth-order Hausdorff polynomial 

will look like 
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Fig. 5 shows the graphical representation of the polynomial 

with values of 0.07556ε =  and 0.2αε = . 

It can be seen in Eq. (4) that after ε  and αε  are substituted 

with their values, raising to the power, removing the brackets 

and reducing, the Hausdorff polynomial can be represented as 

a rational function of its argument. 

( ) 5 4 3

5 2.04738 1.02369 1.86824P x x x x= + − −  

 2
0.601419 0.358612 0.0399253x x− + + . (5) 

It is known from the theory that the transmission function 

of a low-pass filter is a fraction-rational. To achieve a 

realizable transmission function, the polynomial in the 

denominator is required to be a strict Hurwitz’ polynomial. 

The formation of the transmission function, using the 

polynomial in Eq. (4), cannot lead to a realizable transmission 

function for every αε  [1]. That is because the Hausdorff 

polynomial in Eq. (4) is neither even nor odd function of its 

argument, which can be seen from Eq. (5) and Fig. 5. The 

polynomial graph is asymmetrical with regards the centre of 

the coordinate system. 

 

 

Fig. 5. Hausdorff polynomial, n=5, ε =0.07556, αε =0.2 

The investigations showed, that for the value of argument 

/ 2x αε= − , the Hausdorff polynomials have a typical point: a 

root, when the polynomial is even (Fig.5) and a local 

extremum, when it is odd. If a translation with a value of 

/ 2αε  in the positive direction is performed, the translated 

polynomials lead to realizable transmission functions. 
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It is proved in [1], that the translated polynomial represents 

the only and the best approximation of “shifted” delta 

function, translated with / 2αε  in positive direction, in 

Hausdorff metric. 

The square of the transmission function module of low-pass 

Hausdorff filter-prototype has the form 
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where ω  is the angle frequency. 

III. DESIGN OF HAUSDORFF FILTERS 

It is known that the module of the transmission function 

defines the magnitude response of the filter. In Eq. (7) the 

argument of the Chebyshev’s polynomial is divided by the 

expression ( )1 / 2αε− . Considering InEq. (3), the expression 

is positive number less than 1. That leads to a scale “shrin-

king” of the magnitude response compared to the magnitude 

response of a Chebyshev’s I filter as shown on Fig. 6. 

The low-pass Hausdorff filter-prototype design led to the 

following results: 

• The pass-band of the Hausdorff filter-prototype is 

“shrunk” by coefficient ( )1 / 2αε− . 
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• For the same order and ripple in the pass-band, the 

magnitude response of a low-pass Hausdorff filter-prototype 

has the same steepness and attenuation in the stop-band as a 

Chebyshev’s I filter. 

 

Fig. 6. Magnitude responses of Hausdorff and Chebyshev’s I filters 

• Hausdorff low-pass filter-prototype has the same 

linearity in phase response in the pass-band as a Chebyshev’s 

I filter. 

• Hausdorff low-pass filter-prototype has the same 

evenness of GDT in the pass-band as a Chebyshev’s I filter. 

• Hausdorff low-pass filter-prototype cannot have bigger 

unevenness in the pass - band than 1 2  (-3.01dB), because 

1ε <  InEq. (3). 

• Poles’ quality factors have the same values as a 

Chebyshev’s I filter. 

From the above mentioned, a conclusion could be made: 

The Hausdorff low-pass filter-prototype cannot find practical 

application, because of the undesirable “shrinking” of the 

pass-band. 

The inverse Hausdorff filters are more interesting from a 

design point of view. Two types are described here – A and B 

as explained next. The modules of their transmission functions 

are shown with the following two equations: 
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The difference is that for type A the expression ( )1 / 2αε−  

multiplies the argument of Chebyshev’s polynomial while for 

type B it divides the argument. That naturally leads to a scale 

expanding/shrinking of the magnitude response such as for the 

low-pass filter-prototype. In contrast to that, the inverse 

Hausdorff filters have magnitude response poles – real 

frequencies, where the attenuation is infinitive. This allows 

the method of concluded equal-ripple approximation  [4], [6] 

to be applied to these filters. Inverse Hausdorff filters could be 

designed to keep their cut-off frequency, and frequencies in 

the stop-band could be proportional to the αε  factor. 

In the synthesis the transfer function is represented as 

relation of three polynomials e(s), p(s) and q(s) of complex 

frequency s jω= . The polynomial e(s) is Hurwitz strict 

polynomial and its zeros iω  represent the filter own 

frequencies and these of p(s) - the extreme frequencies i∞ω , 

for which the transfer function has infinite attenuation. 

Calculating two of polynomials usually solves the synthesis 

task and the third is defined by the equation: 

 ( ) ( ) ( ) ( ) ( ) ( )e s e s p s p s q s q s− = − + −  (10) 

The zeros of e(s) and p(s) can be found as follows: 

For A-type: 
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For B-type: 
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Fig. 7 compares the magnitude responses of the two types 

inverse Hausdorff filters with Chebyshev’s II filter. 

 

Fig. 7 Comparison of magnitude responses 
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It can be seen from the figure, that the inverse Hausdorff 

filters type A (IHF-A) have less magnitude response steepness 

in the area between the cut-off frequency and the frequency of 

an infinite attenuation and higher attenuation in the stop-band 

in comparison with Chebyshev’s II filter. As for IHF-B it is 

the contrary – a bigger steepness and less attenuation in the 

stop-band. 

Fig.8 compares the phase responses. It is seen from the 

comparison that IHF-A has the best linearity. In this case 

improvement of the linearity compared with Chebyshev’s II 

filter for the frequency 6kHz is 5.3%. IHF-B has the worse 

linearity. 

 

Fig. 8. Comparison of phase responses 

Fig. 9 compares the GDT of the filters. 

 

 

Fig. 9. Comparison of GDT 

The improvement of the evenness of GDT of IHF-A 

compared with Chebyshev’s II filter in this case is a little 

more than 9%. GDT of IHF-B is the most uneven. 

Fig.10 compares the poles of the filters in a complex 

domain. 

The poles values distribution could be used to judge the 

poles’ quality factors of the filters. A criterion is the 

remoteness of the poles with imaginary part from the 

imaginary axis. The poles of IHF-A are the most remote ones. 

That means they will have the lowest values of the poles’ 

quality factors and they will have easier values for 

components realization. 

 

 

Fig. 10. Poles values distribution 

IV. CONCLUSION 

The approximation implementation in Hausdorff metric 

doesn’t lead to a “revolution” in the filter design domain. But 

it could be said, that it is an “evolution” in this domain of 

investigation. The implementation of the Chebyshev’s 

polynomial in Eq.1, creates filters with characteristics similar 

to Chebyshev’s filters. The difference is defined by the value 

of the factor αε . 

Low-pass Hausdorff filter cannot find practical application, 

because there is undesirable “shrinking” of the pass-band, 

proportional to the factor αε . 

When a suppression of the signals close to the cut-off 

frequency is required, the IHF-B filters can be used due to 

their bigger steepness of the magnitude response. They have 

more nonlinear phase response, more uneven GDT and higher 

values of poles’ quality factors 

IHF-A filters are probably the best that can be achieved 

when applying the Hausdorff metric approximation. In 

comparison with Chebyshev’s II filters they have higher 

attenuation in the pass–band, more linear phase response, 

more even GDT and lower poles quality factors. These 

properties make them appropriate for implementing in 

filtration of digital signals. 
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