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Abstract – In this paper a very low sensitivity first-order 

orthogonal complex narrow-band band-pass filter section is 

developed. Then, a noise analysis due to the quantization of the 

input signal is performed. A comparative study with other well-

known complex orthogonal sections has been made on order to 

show the advantages of the developed filter circuit. 
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I. INTRODUCTION 

Quantization of the multiplication products and the input 

signals in the digital filters is causing parasitic noises usually 

described as an error signal. Quantization of the multiplier coe-

fficients is deteriorating the filter characteristics. Development of 

low sensitivity structures is reducing considerably this 

deterioration and additionally is decreasing the roundoff noises. 

Methods of computing the quantization effects in real digital 

systems are well developed so far. In [1] an evaluating recursive 

formula for roundoff errors estimation is proposed. The “inners” 

approach for output noise variance evaluation is suggested in [2]. 

An alternate method of calculating the noise, suitable both for 

analytical and numerical computations and useful for higher 

order filters is presented in [3]. A new algebraic technique 

proposed by Bomar in [4] provides computationally efficient 

state-space realizations preserving low roudoff noise, low 

coefficient sensitivity, and freedom from zero-input cycles.  

Although complex coefficients digital filters are gaining 

popularity in the recent years their quantization noise analysis 

theory is still not well developed and there are few 

publications treating the problem. New structures for complex 

multipliers and their noise analysis are proposed in [5]. In [6] 

theoretical upper bounds on the amplitude of limit cycles 

oscillations are determined for direct-form orthogonal second 

order digital filter. In all these works usually local problems 

are solved and no general method for roundoff noise 

estimation is proposed. In this work we present a technique 

for complex input signal quantization noise analysis. Then we 

apply it on a newly developed very low sensitivity complex 

orthogonal first order sections.  

The paper is organized as follows. An approach to a complex 

noise analysis is proposed in section II. The first-order 

orthogonal complex digital filters are derived in section III. In 

section IV the resulting error signals at the outputs of these 

orthogonal complex sections after input signal quantization are 

examined. In section V, simulation results for quantized input 

narrow-band complex signals are presented and discussed. 

Finally, section VI concludes the paper. 
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II. QUANTIZATION NOISE ANALYSIS FOR COMPLEX 

INPUT SIGNALS 

The effect of quantization of an input signal is equivalent to 

a set of noise samples added to the actual input. In case of 

uniformly distributed noise samples, the variance of the input 

noise is: 
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where 
2δ  is the quantization step and B is the word-length in 

bits. Then the steady-state (nominal) value of the output noise 

variance is given by: 
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where ( )zH  is the transfer function of the digital filter, 
2
,nvσ  

denotes the noise gain and is called also normalized output 

noise variance.  

Complex coefficient digital filters are capable of processing 

both real and complex signals. The quantization of a complex 

input signal presumes a complex error signal as it is shown in 

Fig. 1. Then the complex output signal ( ) ( ) ( )njynyny ImRe +=  

will be mixed with complex output noise: 

 ( ) ( ) ( )njvnvnv ImRe += . (3) 

Through this model it is possible to examine the complex 

output noise variance in a similar way as in the real case. 

x(n)=xRe(n)+jxIm(n) 
Complex 

filter 
+ 

e(n)=eRe(n)+jeIm(n) 

y(n)+v(n) 

 

Fig. 1: Noise model for a complex input signal quantization  

Evaluating the complex output noise variance presumes all 

complex quantities to be considered in Eq.(2). Analytic input 

signals with inphase and quadrature components are processed 

by special class of complex coefficient digital filters called 

“orthogonal”. The orthogonal complex transfer function can 

be presented by its real and imaginary parts as follows: 

 ( ) ( ) ( )zjHzHjzH ImRe +=− . (4) 

Realized by real elements, an orthogonal complex structure 

(Fig. 2) will have two inputs and two outputs (both couples 

real and imaginary), producing thereby four real coefficient 

transfer functions two by two equal with ± sign: 
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Normally the real and imaginary parts of the complex input 

signal undergo the same quantization, i.e. 22
Im,

2
Re, eee σ=σ=σ . 

 
HRR(z) 

HRI(z) 

HIR(z) 

HII(z) 

YRe(n)+vRe(n) XRe(n) 

XIm(n) + 

eIm(n) 

eRe(n) 

YIm(n)+vIm(n) 

+ 

 

Fig. 2: Block-diagram of complex digital filter structure - noise 

model for a complex input signal quantization 

The structure in Fig.2 shows that the complex output noise 

variance real and imaginary components should be composed 

as follow: 
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are the output noise variances for the real and imaginary 

components of the transfer function (4).  

III. COMPLEX ORTHOGONAL DIGITAL FILTER 

CIRCUIT DEVELOPMENT 

One of the best methods of complex digital filter derivation 

is the method of circuit transformation proposed in [7] and 

permitting also to obtain orthogonal complex filters with 

canonical number of elements. We select this method 

expecting that it will permit the new circuit to inherit good 

qualities of the real prototype. 

According to this expectation and after a careful study of 

the more often used real-coefficient first-order digital filter 

structures we selected the best two very low-sensitivity real-

prototypes – MHNS and LS1b low-pass sections [8] (Fig. 3). 
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Fig. 3: Real-coefficients first-order low-sensitivity LP filters sections 

(a) MHNS; (b) LS1b. 

The transfer functions these real sections realize are: 
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The rotation transformation [7] in its orthogonal case: 

 jzzjzz −== −− or11 , (12) 

applied on the LP real transfer functions converts them into 

orthogonal complex coefficients BP transfer functions of 

doubled order. For the MHNS-based orthogonal complex 

structure shown in Fig. 4a they are as follow: 
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whereas for the LS1b-based orthogonal section (Fig.4b) they 

are:  
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Fig. 4: First-order BP orthogonal structure based on the  

(a) MHNS; (b) LS1b real sections. 
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Narrow-band orthogonal BP filters are most often used for 

practical purposes and they can be derived from narrow-band 

LP filter-prototypes (pole near z=1). Achieving low 

sensitivity for such pole position is a very difficult task. In [8] 

the orthogonal structures from Fig.4 have been investigated 

with respect to their coefficient sensitivity for a given poles-

disposition. It was clearly shown that LS1b-based structure 

preserves its magnitude shape even when the coefficients are 

quantized to 2 bits, while MHNS-based structure response is 

considerably changed when the word-length is limited to 3 

bits only. The real prototype-sections (Fig. 3) keep the same 

performance. 

IV. NOISE ANALYSIS OF COMPLEX INPUT 

QUANTIZATION ERRORS  

In this section both real and orthogonal structures regarding 

input quantization errors are investigated.  

Initially the real input signal for the LS1b and MHNS real 

sections is quantised to different word-length. First the output 

noise variance of the real prototype sections, realised with 

very narrow pass-band (α=0.98 and β=0.01) is calculated. 

Some experimental results for input signal quantization from 

2 to 8 bits are shown in Fig. 5. Apparently, the low sensitivity 

LS1b section output noise variance is about ten times lower 

than this of the MHNS-section when the input signal is 

limited to 2 bits only.  

 
Fig. 5: The output noise variance under input signal roundoff 

quantization for LS1b and MHNS real sections 

Then, the corresponding narrow-band BP orthogonal comp-

lex filter sections (Fig. 4) are investigated by using the method 

from section II.  

Following the described in section II method, a complex input 

signal quantization noise analysis is performed. The calculation 

results for complex output noise variances for the LS1b and 

MHNS orthogonal complex sections in different input signal 

word-length are presented in Tabl. 1.  

In order to compare the obtained complex output signal noise 

variances, their complex modules are shown in Fig. 6. 

Tabl. 1 

Complex output noise variances of the 

orthogonal complex sections 
Input signal 

quantization 

in bits 
MHNS-based  

(x 10
-3
) 

2 0.0120638996891700 + j 0.1817906894536900 

3 0.00301597492229 + j 0.04544767236342 

4 0.00075399373057 + j 0.01136191809086 

5 0.00018849843264 + j 0.00284047952271 

6 0.00004712460816 + j 0.00071011988068 

7 0.00001178115204 + j 0.00017752997017 

8 0.00000294528801 + j 0.00004438249254 

 
LS1b-based  

(x 10
-4
) 

2 0.00514438391361 + j 0.51766175890637 

3 0.00128609597840 + j 0.12941543972659 

4 0.00032152399460 + j 0.03235385993165 

5 0.00008038099865 + j 0.00808846498291 

6 0.00002009524966 + j 0.00202211624573 

7 0.00000502381242 + j 0.00050552906143 

8 0.00000125595310 + j 0.00012638226536 

 
Fig. 6: The output noise variances under the input signal roundoff 

quantization for LS1b and MHNS -based orthogonal complex first-

order sections 

It is seen that, the low-sensitivity LS1b-based orthogonal 

complex section is having more than three times lower output 

noise after 2 bits input signal quantization. The shorter word-

length quantization of the input signal means lower power 

consumption and faster computation process. For low-

sensitivity circuits the resistance against quantization effects 

provides better signal to noise ratio (SNR), i.e. higher quality 

digital signal processing. 

V. EXPERIMENTS 

The narrowband orthogonal first-order filter sections were 

investigated in a limited word-length complex signals process-

sing. The complex input signal is a mixture of white noise and 

analytic sinusoidal signal. The uniformly distributed white 

noise samples correspond to the word-length of the input 

complex signal after the quantization. 
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In case of 2 bits quantization both real and imaginary parts 

of the input analytic signal and filter coefficients, some 

experimental results are shown in Fig. 7. In Fig. 7a the real 

output noise signals for both orthogonal sections are 

presented, whilst the imaginary output noise signals are shown 

in Fig. 7b. Obviously the noise reaching to the complex output 

of the orthogonal circuits is significantly higher for the 

MHNS-based than for the LS1b-based section.  

 
(a) 

 
(b) 

Fig. 7: The output noise signals after input quantization to 2 bits  

for LS1b and MHNS - based orthogonal complex sections  

(a) real output; (b) imaginary output. 

The output SNR for the LS1b-orthogonal section is about 

1,5 times higher in comparison to the MHNS-based circuit. To 

achieve the same good results as LS1b section demonstrates in 

2 bits word-length environment, the MHNS orthogonal filter 

should be quantized to no less than 6 bits.  

It is clear that the famous phrase from the real circuit theory 

“low sensitivity and low noise go together” is valid also for 

their complex counterpart.  

VI. CONCLUSIONS 

In this paper an approach to the complex noise analysis is 

proposed. The resulting error signals at the outputs of 

orthogonal complex first-order digital filter sections after 

input signal quantization are examined. The proposed method 

is general enough to be applied for complex filter sections of 

higher order. After relevant alterations it could be effectively 

applied for all other types of roundoff errors estimation in 

complex coefficient systems like multiplication product 

quantization.  

The expectation that the real prototype properties will be 

inherited by its complex filter counterpart was confirmed ones 

again with respect to the quantization noise analysis. It was 

shown that both real and orthogonal complex LS1b-based 

filter sections having very low coefficient sensitivity 

demonstrate low output noise variance due to the input signal 

quantization – many times lower than that of the MHNS-

based circuit.  
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