
29 June – 1 July 2006, Sofia, Bulgaria

181

Framework for Video Editor with Support for Many

Virtual Machines

Angel R. Kanchev
1
, Antoaneta Popova

2

Abstract – Big12software like video editor needs strong and

stable framework. The attempt to make that framework at most

open led to creation of plug-in system that can load both JavaVM

[1] and .NET [2] components. Considering the multiplatform

developing approach and the ability for distributed callings, the

framework has become attractive for any big application.

Keywords – Java, .NET, plugins, plug-ins, multiplatform,

framework.

I. INTRODUCTION

The framework that is described here is made for Audio/

Video Editor but is universal enough – it can be used in any

big application.

By “big” application, we will understand an application that

is built by many modules and is big memory and CPU

consumer. This is the reason to put on first place the

requirement for fastness and size of the framework.

All requirements for such framework could be summarized

this way:

1. To be fast, small and stable.

2. To be easily supported and easy for use.

3. To be maximum open and extensible.

4. To be easily ported for different platforms.

The described framework could be written for some Virtual

Machine (VM) in order to be stable and multiplatform.

Currently there are two widespread virtual machines: Java

VM [1] and .NET CLR (Common Language Runtime) [2].

Both virtual machines have disadvantages when they are

used for big applications:
1. Interpretation of VM code (only for Just-In-Time and

Install-Time compilations – managed native code is not

a problem according this point).

2. Validation and verification of the VM code

(correctness and security check)

3. No control over the memory usage (there is a

“magical” tool – Garbage Collector).

4. Reflection – too universal type descriptions and calling

conventions, which makes it too heavy.

The argument that writing native (unmanaged) code is

dangerous is not strong enough. Actually there are two

reasons for dangerous code – the programmer is not good (the

1 Angel R. Kanchev, is with the Faculty of Communications and

Communications Technologies, Technical University, Kliment Ohridski 8,

1000 Sofia, Bulgaria, E-mail: angel_kanchev@mail.bg
2 Antoaneta A. Popova, is with the Faculty of Communications and

Communications Technologies, Technical University, Kliment Ohridski 8,

1000 Sofia, Bulgaria, E-mail: antoaneta.p@komero.net

team is not well formed) or the schedule is too tight. Neither

the technology nor the language make the code more secure.

The good things in VM approach are the fast source

compilation (to VM code), small size of the executables,

platform independence, nice exception system and multi-

language interoperation. So writing managed code is faster

and easier – it is good for rapid application development

(r.a.d.). For big, heavy applications, where full control over

the hardware is needed, native code is still the best (however,

if we put commercial arguments here the situation will be a

little bit different).

The hybrid approach – like .NET with unsafe code, has the

disadvantages of both systems (managed and unmanaged)…

The best approach is to use one technology for the whole

framework.

As a result, it is created a simple unmanaged framework

that can load different virtual machines (see Table I).

TABLE I
REASONS FOR IMPLEMENTATION APPROACH

Decision Reason

Simple Small, stable, easy to support and use

Unmanaged Fast and full control over the hardware

Loading of VM It can support plug-ins for different

Virtual Machines

The goal of the framework is to ease writing of open Video

Editor. The key word here is open – the application must be

dynamic (change of active modules at runtime) and extensib-

le. Change of active modules means change of different

modules that can do similar work.

Multiplatform approach is used in the framework’s imple-

mentation (multiplatform libraries are used and platform-de-

pendant code is isolated).

There is plug-in system with cross-call capabilities (it will

be described later).

II. OVERALL DESCRIPTION

The framework is like mini virtual machine – it has:
- Application loaders

- GUI (Graphical User Interface) – the multiplatform

library wxWidgets is used [3].

- Reflection-like system for class creation (there are

identifications only for modules and class names)

- Plug-in system – the plug-in interfaces are statically

hard-coded: no reflection, metadata, Interface Defini-

tion Language (IDL) or any of these universal

systems.

Framework for Video Editor with Support for Many Virtual Machines

 182

Note that any reflection-like system is heavy – even the

current one should be used for major interfaces and for plug-

ins only. On Fig.1, you can see the major interfaces (and the

data transfer) for Video Editing system.

DEMUX

Decoder

System I/O

Renderer

Filter / Effect

MUX

Coder

System I/O

Captue /

Synthetic Data

Filter / Effect

Output stream

Audio / Video / Data stream

Coded stream

File / Network stream

Input stream

Fig. 1. Main parts of Audio/Video editor

The framework is abstract enough not to limit with Video

Editor’s needs, so we will talk for “Application” instead of

Video Editor from now on.

From distribution point of view the application consists of

three parts: loader, core and plug-ins. The application core has

the major functionality of the application. The module that has

the binding system between core modules, that dispatches

calls to all core modules and that has the startup code for the

application core is called Core. We will distinguish appli-

cation core and module Core by the first capital letter.

On Fig. 2, you can see the major parts of the framework

and their time relation (Core and PluginManager are modules

in the application core). Arrow directions show function calls

(i.e. at loading time the callings are unidirectional).

Fig. 2. Parts of the framework and their interaction in time

Note that plug-ins and PluginManager have bidirectional

calls. That is – when the core needs a plug-in it uses

PluginManager to initiate a call. If the plug-in needs some-

thing from the core, it can call back PluginManager, which in

turn will call the necessary function in the core. This is the

cross-call capability of PluginManager. For example, it allows

calling .NET plug-in from inside Java plug-in (it will go

through module Core – see Fig. 3). If it is necessary, Plugin-

Manager can load a VM – for now are supported JavaVM [1]

and .NET CLR [4].

.NET plug-in

PluginManager

Core

PluginManager

Java plug-in

PluginManager

Core

Main

Top of the stack

Fig. 3 Cross call stack (between Java and .NET)

On Fig.4, you can see the application loading in more

details. There are many AppLoaders which goal is to find and

load one dynamic library – the “Main” module. Main module

has exactly one exported function – ExecuteApp. This

function returns when the application must exit so the loader

should exit when the function returns. There is parameter to

ExecuteApp, which is “Environment Data”. The application

loader must build and pass correct environment data depen-

ding on what is the loader’s type.

Before loading the core, Main have to check that all

necessary components are available and with correct versions.

After that, Main loads Core and gives it the environment data.

On its turn, Core passes the environment data to Plugin-

Manager.

Main
AppLoader

Native 2

AppLoader

Java VM

Core

AppLoader

Native 1

PluginManager

Environment Data

Fig. 4. Application loading

If the loading environment is different from the one

necessary for a plug-in, PluginManager creates the necessary

environment (i.e. loads the necessary virtual machine).

III. FRAMEWORK ORGANIZATION

The framework organization from developer’s point of view

can be seen on Fig. 5. The arrow means “use” or “links to”.

There are three major (or distribution) groups: application

loaders (AppLoaders), application core and application plug-

ins. The application core consists of many dynamic libraries

(modules). On Fig. 5 are shown three of them: CoreUtilities,

Angel R. Kanchev, Antoaneta Popova

 183

Core and PluginManager. These three modules are the

modules from the core that participate in the framework. The

application core contains additional modules that use the

framework to add functionality to the core.

PluginManager
(Dynamic library)

Core

(Dynamic library)

plug-ins

(Depends on its type)

CoreUtilities

(Dynamic library)

AppLoaders

Utilities

(Static library)

Core

Fig. 5. Framework organization

The module CoreUtilities is used to export the classes in

Utilities as dynamic library so the size of the core modules

will not increase. Utility modules are modules like: .ini file

parser, configuration loader, dynamic libraries manipulator

and version support.

IV. FEATURES OF THE APPLICATION CORE

A. Component / Proxy architecture

The module Core exports the binding system for the

application core. It is implementation of design pattern called

“Component / Proxy” [5]. That pattern says: “component is a

class that is hidden behind another class – proxy”. Compo-

nents can be accessed only through their proxies.

As you can see on Fig.6, one component can have many

proxies but one proxy can point to one component.

Component

Proxy

Proxy

Proxy

Fig. 6. Component – Proxy relations

It is very important to note – proxies are requested for

creation and destruction while creation and destruction of

components is automatic. This way it is possible that there are

components without proxies as well as proxies without

components (dead proxies). It is normal for component to be

without proxies but dead proxy is “bad” thing. Such proxy has

to simulate some work when its functions are called…

According creation, there are two types of components:

singleton (it can live without proxies and there can exist only

one instance of these components) and non-singleton (for each

requested proxy, one component is created). Component can

be destroyed after all its proxies are destroyed (but even

though, the component could be left alive). There is manager

that controls the lifetime of components and takes requests for

proxies – ComponentManager.

The component and proxy creation is done via string

identification that contains: Name of the Module (a dynamic

library) and Name of the Component. Creation of classes

using string identification is similar to reflection systems in

Java and .NET.

In the current implementation in addition to the reference

counting system, proxy and component lists are used. The

benefit is that a component can understand when any of its

proxies is destroyed and a proxy can understand if its

component is destroyed.

ProxyImpProxyStub ComponentProxy

Communication

over a network

Fig. 7. Remote call between Proxy and Component

“Component / Proxy” architecture has one more benefit – it

can be used for remote calls as shown in Fig. 7. For class

Proxy, ProxyStub looks like a component. The same way, for

class Component, ProxyImp seems to be ordinary proxy. This

way Proxy and Component never understand that they are on

different computers and are communicating via network. The

job of ProxyStub and ProxyImp is to convert function calls to

protocol requests / responses.

Static class hierarchy for the described architecture is

shown on Fig. 8 (an arrow means inheritance). Class

BaseComponentProxy has one pointer to IBaseComponent.

This way Proxy and ProxyImp can point to either Component

or ProxyStub. Class BaseNetworkProxy has basic

functionality for data exchange through network.

IBaseComponent IBaseProxy

BaseNetworkProxy BaseComponentProxy

ProxyProxyImpProxyStubComponent

Fig. 8. Class hierarchy of C / P architecture

B. Configuration file

If you look again at Fig. 2 you will see three independent

modules that are involved in the application loading:

AppLoader, Main and Core. The interface between them is

very tight – one function (ExecuteApp, exported by both Main

and Core). In order to parameterize the loading and to create

storage with common data for these modules there is a little

configuration file. It could be parsed up to three times (each of

the involved modules may need to parse it). Once the module

Core has the information in the configuration file, the whole

application core will have it.

In the main configuration file there is reference to another

configuration file – for the logging system.

Framework for Video Editor with Support for Many Virtual Machines

 184

C. Log system

According the destination of the log strings there are 3

output types:

1. File – the log strings are written in a file

2. GUI – the log strings are put in a place where the

user can see them

3. Debug – in the debugger output (for debug builds

only).

The string formatting for each output type can be different.

This way the developer and the user are eased at most.

There are four logging levels: Info, Warning, Recoverable

Error and Fatal Error. The application exits on fatal errors…

The log configuration supports different combinations

between levels and output types. In addition, there is filter on

per-module basis (which modules to include / exclude from

logging).

In order to be fast, the log system defines for each possible

configuration different (optimized) function. There are 4

function pointers – for each log level. During initialization,

these pointers are set according the configuration. The logging

is done via call to the necessary function pointer…

D. Plug-in system

The plug-in system was discussed on different places in this

article and was well described ideologically. It consists of

core module (PluginManager) and export declarations.

PluginManager exports strictly defined interfaces for use by

different Virtual Machines; or by native plug-ins, written in C

or compatible language (C++, Borland’s Pascal). The plug-in

system is tested with native (C, C++) and VM (Java and

.NET) plug-ins.

If the core is loaded by loader for some VM and a plug-in

for the same VM is called, PluginManager use the environ-

ment of the loader. Otherwise, it loads the VM first and then

proceeds with loading and calling the plug-in. The VM

loading code is called only if corresponding plug-in is

requested. Once VM is loaded, it is used for all plug-ins of its

type. The code is protected against missing VM so the user is

not obliged to have any VM.

V. EXPERIMENTS AND CONCLUSIONS

The framework that was described so far is implemented in

native C++ and is used in Video Editing software (see Fig. 1).

The experiments with that software have shown that creating

new module for the application core is time-consuming task.

In order to ease the creation of new core modules, there is

created custom wizard for Microsoft Visual Studio called

“CorePackage”. This wizard generates project that can be

directly compiled to a dynamic library that covers the requi-

rements for core module.

The experiments have shown the following advantages of

the framework:

1. It is very open and supports native (C compatible),

JavaVM and .NET CLR plug-ins (all plug-in types are tested)

2. It gives optimized, configurable and easy-to-use log

system.

3. It has reflection-like system that allows module

loading and class creation at runtime determined by string.

When used with predefined interfaces (like the interfaces in

Fig. 1) the system is powerful enough without being as heavy

as Java or .NET reflection.

Allowing each block on Fig. 1 to be plug-in makes the

software very dynamic and extensible. In addition, concent-

rating interfaces and data flow in one place (the application

core) gives full control over the data.

Future work – after finishing the framework for the Video

Editor, features implementation can be started (stream editor

with lazy algorithm and after that – editor for each level on

Fig. 1).

REFERENCE

[1] Liang, Shen: “The Java™ Native Interface”, Addison Wesley

Longman Inc., 1999.

[2] Microsoft Corporation: “Technical Overview of the Common

Language Runtime”, 2006.

[3] Smart, Julia; Robert Roebling; Vadim Zeitlin; Robin Dunn:

“wxWidgets 2.5.5: A portable C++ and Python GUI toolkit”,

April 2005.

[4] Chakraborty, Ranjeet: “Creating a Host to the .NET Common

Language Runtime”, article in “The Code Project”, October

2001

[5] Gamma, Erich; Richard Helm; Ralph Johnson; John Vlissides:

“Design Patterns: Elements of Reusable Object-Oriented

Software”, Addison Wesley Longman Inc., 1998.

