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Abstract – In this paper we suggest a hybrid model for scalar 

quantizer construction in order to achieve the quantization per-

formances arbitrarily close to those of the optimal scalar quan-

tization. This model is based on the combination of two quanti-

zation techniques. One of them is the companding technique and 

the other one is the Lloyd-Max’s procedure for designing scalar 

quantizers. The suggested mixed technique has low implement-

tation complexity. Furthermore, it has a little bit greater comp-

lexity than companding technique, but enables better quantizer’s 

performance, very close to those of optimal Lloyd-Max’s scalar 

quantizers. The recommended hybrid model presents the general 

model of the scalar quantizer considered in [1]. 
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I.  INTRODUCTION 
 

  One of the important issues from the engineer’s point of 

view is the design and implementation of quantizers to meet 

the performance objectives. Lloyd [2] and Max [3] respecti-

vely proposed an algorithm to compute optimum quantizers 

using mean-square error distortion measure. Namely, they 

gave the nonlinear quantization procedure in order to 

minimize the quantization noise. The primary goal when 

designing an optimal Lloyd-Max’s quantizer is to select the 

representation levels and the decision thresholds so as to 

provide the minimum possible average distortion for a fixed 

number of quantization levels N. Particularly, Lloyd-Max’s 

algorithm is an iterively algorithm, which performs in each 

iteration calculation of all representation levels and decision 

thresholds of the N levels scalar quantizer. The size of 

necessary calculation is the deficiency of this algorithm, 

especially when designing scalar quantizers with a large 

number of quantization levels. However, a nonuniform 

quantization can also be achieved by compressing the input 

signal, than quantizing it with a uniform quantizer and 

expanding the quantized version of the compressed signal 

using a nonuniform transfer characteristic inverse to that of 

the compressor. The described quantization technique is 

called the companding technique. Bad approximation of the 

input signal in the region of high amplitudes is the deficiency 

of the companding technique which is the consequence of the 

extensive outermost cells. In order to reduce the size of the 

necessary calculation in comparision to that for Lloyd-Max’s 

algorithm, as well as to improve the deficiency introduced by 

using the companding technique, we suggest one model, 

denoted  here as the hybrid model. This model is based on  the  
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combination of the companding technique and the Lloyd- 

Max’s procedure of designing scalar quantizers. Namely, 

applying the companding technique to N-2L inner cells and 

Lloyd-Max’s procedure to 2L outer cells it is possible to 

design N-levels scalar quantizer. The suggested model is very 

simple for analysis and it provides an almost optimal design 

of scalar quantizers. Therefore, in this paper we continue the 

research in the field of finding as simple as possible method 

for designing optimal scalar quantizers. We perform an exact 

and complete analysis of the hybrid model considering the 

Laplacian input signals. Furthermore, we derive the 

expression for determining the decision thresholds and the 

representation levels of the considered scalar quantizer. Thus, 

knowing the decision threshold t2K-1 it is possible to determine 

the support region of the observed scalar quantizer, ranging   

(-t2K-1, t2K-1). Optimal determining of the support region has 

been considered by a lot of researchers [1], [4], [5]. The 

problem of determining the support region was considered by 

Sangsin Na and David Neuhoff [1]. They applied the 

companding technique when they calculated the values of the 

representation levels and the decision thresholds of N-2 inner 

cells and Lloyd-Max's procedure when calculated the values 

of the first and the last representation levels. Namely, they 

considered the special case for L=1, of the hybrid model 

suggested in this paper.  At the end of this paper we are 

considering the performances (relative distortion error) of the 

quantizers designed by using the hybrid model. We show that 

these performances are arbitrarily close to those of optimal 

scalar quantizers. 

II. HYBRID MODEL 

Let us consider an N-level nonuniform scalar quantizer Q 

for the Laplacian input signals. Scalar quantizer Q is defined 

with Q: R → C, as a functional mapping of the set of real 

numbers R onto the set of the output representation. The set of 

the output representation constitutes the code book: 

                  { } RyyyyC N ⊂≡ L,,, 321                    (1) 

that has the size |C|=N. The output values, yj, are called the 

representation levels. The nonuniform scalar quantizer Q is 

defined with the set of the output values and with the partition 

of the input range of values onto N cells i.e. intervals αj, 

j=1,2,...,N. Cells αj are defined with the decision thresholds 

{t0, t1,…, tN}, such that αj=( tj-1,tj], j=1,2,...,N. A quantized 

signal has value yj when the original signal belongs to the 

quantization cell αj. Hence, N-level scalar quantizer is defined 

as a functional mapping of an input value x onto an output 

representation, such as: 

   jyxQ =)( ,    jx α∈ .                          (2) 
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The negative thresholds and the representation levels are 

symmetric to their nonnegative counterparts. Hence, the 

considered quantizer can be depicted by using positive values 

of the decision thresholds 0=tN/2<tN/2+1<…<tN-1<tN=∞ and 

representation levels yN/2+1<yN/2+2<…<yN. Let us denote the 

distances from the representative levels to the nether decision 

thresholds, i.e. reconstruction offsets δj j=1,…,N, that are 

necessary when calculating the parameters of the scalar 

quantizers. 

Nonuniform quantization can be achieved by the following 

procedure: compress the signal x using a nonlinear 

compressor characteristic c(·), quantize the compressed signal 

c(x) with a uniform quantizer, expand the quantized version of 

the compressed signal using a nonlinear transfer characteristic 

c
-1

(·) inverse to that of the compressor. The corresponding 

structure of a nonuniform quantizer consisting of a 

compressor, a uniform quantizer, and expandor in cascade is 

called the compandor. Let us define the compressor function 

c(x) similarly as in [6]: 
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Also, the following equation is valid for the compressor 

function c(x) [7]:  
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N
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When the values of the input signal x are within the (-∞,∞) 

range, the values of c(tj) are copied into the [-1,1] range by 

using thus defined compressor function. Decision thresholds 

tj, j=1,2,...,N-1 can be determined by equating the last two 

equations: 
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In order to simplify the equations that are necessary for the 

scalar quantizer’s parameters calculation we can introduce the 

relation K=N/2. Thresholds t2K-L, L«K, can be determined by 

using the following expression: 

                         







=−

L

K
t LK ln

2

3
2 .  (6) 

In this paper we are considering the hybrid model based on 

the combination of two quantization techniques. One of them 

is the companding technique and the other one is the Lloyd-

Max’s procedure for designing scalar quantizers. Namely, 

applying the companding technique to the range (-t2K-L, t2K-L) 

(inner region), i.e. to N-2L inner cells αL+1,…, α2K-L, and 

Lloyd-Max’s procedure to union of ranges (t0,- t2K-L) and    

(t2K-L, t2K) (outer region), i.e. 2L outer cells α1,…,αL and       

α2K-L+1,…, α2K it is possible to design the N-levels scalar 

quantizer. The widths of the outer cells α1,…,αL and α2K-L+1,…, 

α2K are constant and independent of the number of 

quantization levels N. Considering that fact the performances 

of the designed quantizer will be better than those of the 

quantizer realized by using the companding technique. 

Therefore, by using the compressor function c(x), defined 

with Eqs. (3) and (4), we can use Eq. (6) to calculate the edge 

of the inner region t2K-L. In order to calculate the decision 

thresholds and the representation levels of the outer region we 

use the well known values of the reconstruction offsets       

δ2K-L+1,…,δ2K that are calculated in case of optimal Lloyd-

Max’s scalar quantizers [7]: 

12212 +−−+− += iKiKiK ty δ ,      Li ,...,1=      (7) 

         221212 +−+−+− += iKiKiK yt δ ,     Li ,...,2=     (8) 

The values of the decision thresholds and representation levels 

of scalar quantizers realized by using the companding 

technique are not optimal. The goal of the suggested hybrid 

model of quantizers is to make, as much as possible, the 

decision thresholds and the representation levels to be 

optimal.  Also, when designing N-level Lloyd-Max’s scalar 

quantizer it is necessary to know all the values of the decision 

thresholds and the representation levels. Hence, in such a case 

4K values should be memorized. However, when designing N-

level scalar quantizer, based on the hybrid model, it is 

required to know the edge of the inner region t2K-L and the set 

of L values of the reconstruction offsets δ2K-L+1,…,δ2K, i.e. the 

set of L+1 values. Thus, sparing the memory space simpler 

solution of hardware can be achieved. This is particularly of 

interest when designing scalar quantizers with large number 

of quantization levels N=2K. Hence, the compromise between 

the design complexity and the distances from the optimal 

solution of the scalar quantizer designing problem should be 

obtained. Furthermore, this model is the generalized model 

which for L=K presents the model of the Lloyd-Max’s 

quantizer while in case of L=0 presents the model of the 

quantizer realized by using the companding technique. 

Choosing the values of L it is possible to arbitrarily approach 

the optimal solution of the scalar quantizer construction 

problem.  

III.  THE QUANTIZER PERFORMANCES  

The performance of a quantizer is often specified in terms 

of SNRQ (signal to quantization noise ratio), given by [8]: 









=

D
SNRQ

2

10log10
σ

                        (9) 

measured in decibels, with σ
2
denoting the variance of x. Here 

we assume the unit variance input signal, therefore SNRQ can 

be given by: 

               







=

D
SNRQ

1
log10 10 .         (10) 

Let us define the relative distortion error δ such as: 

opt

opt

D

DD −
=δ    (11) 

where D
opt

 is the optimal distortion value. Also, let us denote 

the optimal value of SNRQ with SNRQ
opt

. Introducing the 

relation: 
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optSNRQSNRQSNRQ −=∆   (12) 

the Eq.  (11) becomes: 

                                 110 10 −=

∆
−

SNRQ

δ .         (13) 

In analyzing the behavior of the quantizer, it is preferable to 

use relative quantities, like signal to quantization noise ratio 

and relative distortion error instead of absolute quantities, 

such as distortion. Relative parameters portray the behavior of 

the quantizer in a way that is independent of the signal level 

and hence is more general. Good distortion approximation of 

quantizers based on the companding technique can be  

achieved  by  using  Bennett’s  integral  [9], [10] ranging       

[-t2K-L,+t2K-L]: 
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III.  NUMERICAL RESULTS 

Table I provides numerical values of the the relative 

distortion error δ, calculated for L=0,1,2,4, when the number 

of quantization levels varies (N=32, 64, 128). Namely, one 

confirmation of the hybrid model validity is given by Table I. 

It is apparent that for L=8, for large enough number of 

quantization levels N, numerical values of the relative 

distortion error δ are below 0.005 [11], whereby the one of 

stopping criterion that allows interruption of the Lloyd-Max's 

algorithm is satisfied. Hence, it is obvious that for L=8, 

recommended the hybrid model enables optimal scalar 

quantizer designing. Summary of the numerical values for 

SNRQ, calculated for L=0,1,2,4,8, when the number of 

quantization levels are N=32, 64, 128, is given by Table II. 

Assimilating the appropriate values from Table II and      

Table III, one can notice that when the value of L grows it is 

approximately possible to approach to optimal values of the 

SNRQ. 

TABLE I 

NUMERICAL VALUES OF THE RELATIVE DISTORTION ERROR δ, 

CALCULATED FOR L=0,1,2,4, 8, WHEN THE NUMBER OF QUANTIZATION 

LEVELS VARIES (N=32, 64, 128). 
 

δ N=32 N=64 N=128 

L=0 0.0713 0.0348 0.0181 

L=1 0.0341 0.0168 0.0093 

L=2 0.0213 0.0106 0.0062 

L=4 0.0110 0.0057 0.0038 

L=8 0.0041 0.0023 0.0021 

 
TABLE II 

NUMERICAL VALUES OF THE SNRQ, CALCULATED FOR L=0,1,2,4, 8, 

WHEN THE NUMBER OF QUANTIZATION LEVELS VARIES (N=32, 64, 128). 

SNRQ N=32 N=64 N=128 

L=0 23.5709 29.5915 35.6121 

L=1 23.7244 29.6675 35.6499 

L=2 23.7785 29.6941 35.6631 

L=4 23.8226 29.7155 35.6736 

L=8 23.8522 29.7299 35.6807 

TABLE III 

OPTIMAL REFERENCE OF THE SNRQ, (SNRQOPT), WHEN THE NUMBER OF 

QUANTIZATION LEVELS VARIES (N=32, 64, 128). 
 

 N=32 N=64 N=128 

SNRQopt 23.87 29.74 35.69 

III.  CONCLUSION 

The suggested hybrid model for scalar quantizer construc-

tion enables sophisticated relation, i.e. compromise between 

design complexity and the distances from the optimal solution 

of the scalar quantizer designing problem. The depicted model 

is based on the quantization technique that is very simple and 

convenient for use. It is very important to point out that for 

fixed L, by using the suggested hybrid model, when the 

number  of  quantization  levels  N varies, the size of the 

necessary calculation of scalar quantizers’ parameters values 

is constant. Furthermore, the required memory space remains 

constant. However, the size of the necessary calculation and 

the capacity of memory space for Lloyd-Max's quantizers 

grow with the number of quantization levels N. In such a way, 

comparing Lloyd-Max's quantizers considerable contribution 

can be achieved by using the proposed hybrid model. Also, by 

using the suggested hybrid model for designing scalar quanti-

zers with large enough number of quantization levels N, it is 

possible to achieve nearly optimal values of SNRQ, i.e. the or-

der of difference is 10
-2

. This is yet another proof of the hybrid 

model validity. Accordingly, the analyses shown here is of a 

practical importance because it can be of great help to engi-

neers. 
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