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Abstract − In this paper the optimal product pyramid Zn-1 

lattice vector quantization of memoryless Laplacian source will 

be considered. The asymptotic analysis based on minimum 

distortion criterion will be performed. We will show that 

obtained optimal distortion is function of scalar case Bennet’s 

integral and on this base we will find optimal multidimensional 

radial companding characteristic. In that way, applying the 

quantization technique that has small implementation 

complexity, we will achieve the signal to quantization noise ratio 

which in some cases differs from that of optimal vector 

quantization for about 0.5 dB. 
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I. INTRODUCTION 
 
In order to achieve the conversion of analog signals into 

efficient digital representation and the compression of digital 
information into the fewest possible bits, the vector quanti-
zation was developed. Vector quantization is an extension of 
the simple scalar quantization to multidimensional spaces and 
it can yield smaller average mean squared error per dimension 
than scalar quantization for the case of fine quantization [1], 
[2]. Also, the rapid advance in digital signal processor chips 
made possible low cost implementation of complex vector 
coding techniques.  

The quantizer presented in this paper is designed for a 
memoryless Laplacian source. One reason for studying the 
memoryless Laplacian source is that it naturally arises in 
numerous applications. For example, the first approximation 
to the long-time-averaged probability density function (pdf) of 
speech amplitudes is provided by Laplacian model [1]. Also, 
in a number of papers the vector quantization of memoryless 
Laplacian source was analyzed since the probability density 
function of the difference signal for an image waveform 
follows the Laplacian function [3]. 

In this paper we consider the optimal product vector 
quantization which in comparisson with the unrestricted 
optimal vector quantization has a little worse performances 
but the lower implementation complexity. One quantization 
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technique that can be applied for quantizer design is suggested 
in [4]. In that paper the importance of source geometry and 
lattice quantization was noted. Author considered the weigh-
ted pyramid vector quantizers for Laplacian sources and used 
one established approximate heuristic distortion formula for 
optimal weighted pyramid vector quantization. Here we 
derive the exact equation for the optimal total distortion.  

Multidimensional companding on optimal high rate 
quantization was introduced by Gersho [5]. He pointed at the 
difficulties of doing optimal quantization with companding 
vector quantization. Bucklew also showed that asymptotically 
optimal unrestricted vector quantizers for vector dimensions 3 
and greater can not be implemented using a companding 
structure, except for a very restricted class of source densities 
[6], [7]. A significant contribution to the understanding of 
companding was made in [8]. In [8] and [9] one analytic 
solution for radial companding characteristic was suggested. 
The proposed solution is independent of source type. 
However, author of [10] showed that in the case of Gaussian 
source quantization, the signal to quantization noise ratio 
obtained applying the companding characteristic obtained in 
[8] and [9] is for about 2.5 dB smaller than that of optimal 
vector quantization and he gave the better solution. In [10] the 
proposed heuristic solution gives performance for about 1 dB 
worse than that of optimal vector quantization in the case of 
Gaussian source quantization.  

In order to respect source geometry we observe the pyramid 
vector quantization. Also, since we observe the equal points 
number per hyperpyramid equally distributed, all these points 
would map into the same points on hyperpyramid that has 
radius 1. Because of that it is convenient to apply the Zn-1 

lattice on unit pyramid surface and after that radial map the 
obtained n-1 dimensional cells into n dimensional cells. Then 
we perform the asymptotic analysis based on minimum 
distortion criterion. After some mathematical manipulation we 
express the normalized moment of n dimensional cell in 
function of the normalized moment of n-1 dimensional cell 
projection. Than, by optimizing the total distortion, we find 
the optimal hyperpyramid number and distortion. We show 
that obtained distortion is function of scalar case Bennet’s 
integral and on this base we find the optimal multidimensional 
radial companding characteristic. In that way, applying the 
quantization technique that has smaller implementation 
complexity, we achieve the signal to quantization noise ratio 
which in some cases differs from that of optimal vector 
quantization for about 0.5 dB. 
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II. ASYMPTOTIC ANALYSIS OF OPTIMAL PRODUCT 

PYRAMID VECTOR QUANTIZATION 
 
For n-dimensional vector [ ]Tnxxx L21=x  consisting 

of independent and identically distributed (i.i.d.) Laplacian 
variables 

i
x  with zero mean and unit variance, the joint 

probability density function of x is 
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The contour of constant probability density function (pdf) is 
given by 
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where fc is the value of pdf. This is an expression for the n-
dimensional pyramid with radius 0g , where we define the 

radius as 
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The radius g is also random variable and has a pdf given as 
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Using the previous formulation for g, we can perform the 
coordinate transformation and express the vector x through 
the vector intensity, i.e. the vector amplitude g and the 
location vector [ ]Tnsss L21=s  

 sx g= . (5) 

The n dimensional vector s is projection of vector x on 
hyperpyramid that has radius 1, i.e. one endpoint of vector s is 
placed on unit hyperpyramid. 

In order to respect source geometry, we consider that a 
nonlinear vector quantization of Laplacian source has L 
representative amplitude levels determined with equation 

Liconstg
i

,...,1.,ˆ == . In accordance with this assumption, 

the decision amplitude levels are gi, i = 0,…, L. Also, since we 
analyze the product vector quantization, we have the equal 
points number per amplitude levels M equally distributed. 
Therefore, we have that  

 NLM = , (6) 

where N is total points number of quantizer. If we take into 
consideration that number of amplitude levels L is very large, 
the required memory in the case of product nonuniform 
quantization is far less than that in the case of unrestricted 
nonuniform quantization when we should store the points 
number on each amplitude levels Mi, i = 1,…,L.  

In the case of product quantization the points from different 
amplitude levels map into same points on hyperpyramid that 
has radius 1. Because of that we can apply the Zn-1 lattice on 
unit pyramid surface and after that radial map the obtained n-1 
dimensional cells into n dimensional cells with representatives 
equally distributed on observed hyperpyramides (Fig 1.). So, 

if we sign the quantization cell as ci,j, where i determines 
amplitude level, i=1,…, L, j the cell on given representative 
amplitude level, j=1,…, M, we can write that representative of 
cell ci,j is 

 LiMjg jiji ,...,1,,...,1,ˆˆˆ , === sx . (7) 
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Fig. 1. Illustration of pyramid Zn-1 lattice vector quantization. 

 
Now, we should define the normalized second order 

moment, i.e. the inertia moment of cell ci,j 
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where vol(ci,j) is the volume of the cell ci,j  
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If we take into consideration that corresponding unit vectors 
to vectors x and 

ji ,x̂  are s and 
j

ŝ , respectively, the Eq. (10) 

also applies to them 
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j

d ss . (11) 

Beside this, for great number of amplitude levels L, we can 
assume that

i
gg ˆ≈ inside one cell, i.e. we can write  

 ( ) )ˆ,(ˆˆ)ˆ,( 22
, jiiji dgggd ssxx +−= . (12) 

We also know that for great number of amplitude levels L, 
the volume of cell ci,j can be approximated as  
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where )ˆ( igS  is effective surface of one cell from hyperpyra-

mid that has radius 
i

ĝ  and ∆gi = gi –gi-1.  

Similar, we can define the normalized second order 
moment of ci,j cell projection on unit hyperpyramid Sj 
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where n-1 is dimension of cell Sj and  
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If we substitute Eq. (12) in Eq. (8) simultaneously using the 
relation sx dgdgd n

i

1ˆ −= , after some mathematical manipulation 

we express the normalized moment of n dimensional cell in 
function of the normalized moment of n-1 dimensional cell 
projection 
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Now, we can find distortion per dimension of the jth cell on 
the ith representative amplitude level (ci,j)   
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We perform asymptotic analysis, i.e. we assume that pdf of 
input vector f

x
(x) is constant inside cell and has value 

)ˆ( , jif xx . Under this assumption we can write that  
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where Pi,j is the probability that the vector x belongs to cell ci,j 
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After that the granular distortion of cells that have repre-
sentatives on the ith amplitude representative level is 

 i
n

ji

n
M

j

jii PcMDD

2

,
1

, )(vol==∑
=

, (20) 

where Pi is a probability that vector x is located between 
hyperpyramides that have radii gi and gi-1 
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On the other hand, we also observe the nonuniform quanti-
zation through the companding vector quantization. Because of 
that, we define the multidimensional radial companding charac-
teristic h(g). This function maps compressor input range [0,+∞) 
into output range [0,1). Since we consider the great number of 
amplitude levels L, we use following relation in our analysis 
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Substituting the Eqs. (16), (23) and (21) into Eq. (20), we 
get that distortion per dimension for whole product nonuni-
form vector quantizer of signal generated by Laplacian source 
can be written as follows 
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If we apply the Riemann integral definition on the right hand 
of (24), we can replace sum with integral 
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If we substitute Eq. (15) in Eq. (25) and take into considera-
tion that M = N/L, we get the expression for total distortion 
per dimension of product pyramid Z

n-1 lattice vector quanti-
zation D in function of hyperpyramides number L 
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Now we can perform the asymptotic analysis based on 
minimum distortion criterion. By optimizing the total distor-
tion, i.e differentiating D with respect to L and equalizing with 
zero, we find the optimal hyperpyramid number and distortion 
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respectively. Since n, t and N are given parameters, Dopt 
depends only of scalar variable l0. If we carefully observe the 
expression for l0, we see that Eq. (27) corresponds to Bennet’s 
integral form in the case of scalar quantization. Since in this 
way we show that obtained distortion is only function of sca-
lar case Bennet’s integral, we can find optimal multidimensio-
nal radial companding characteristic. Namely, we conclude 
that multidimensional radial companding characteristic has 
the same form as the optimal scalar companding characteristic 
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In [11] the optimal piecewise uniform vector quantization 
of memoryless Laplacian source was analyzed. Applying this 
analysis, the optimal multidimensional radial companding 
characteristic (31) can be also obtained, but the procedure 
would be more complicate. 

After short mathematical manipulation, we obtain that 
optimal product Zn-1 lattice vector quantization distortion and 
optimal number of hyperpyramid are 
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respectively. 
In Table I we show the obtained results for signal to 

quantization noise ratio SQNR 

 
D

SQNR
1

log10=  (34) 

in function of dimension n for bit rate  
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Simultaneous the experimental results are obtained (SQNR
e). 

Since the confidence of simulation is 95%, the performed 
simulation run of 1000 vectors shows good matching with 
theoretical results.  

Table also contains the values of signal to quantization 
noise ratio in the case of optimal unrestricted nonuniform 
vector quantization 
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and difference ∆SQNR = SQNR
OVQ − SQNR. It is obvious 

from Table I that difference between signal to quantization 
noise ratio of optimal and optimal product vector quantization 
decreases with the increase of the dimension n and for n = 32, 
∆SQNR = 0.55 dB. Furthermore, for large dimension (n = 
125), optimal product pyramid vector quantization 
performances converge to those of optimal vector quantization 
(∆SQNR = 0.19 dB). On the other hand, comparing Eq. (32) 
with Eq. (36), we note that ∆SQNR is independent of N, i.e. 
bit rate R. 

 
TABLE  I 

SIGNAL TO QUANTIZATION NOISE RATIO IN FUNCTION OF DIMENSION 
 

N 16 24 32 125 

SQNR [dB] 45.82 46.22 46.44 47.00 

SQNRe [dB] 46.54 46.57 46.82 47.11 

SQNROVQ [dB] 46.74 46.91 46.99 47.19 

∆SQNR [dB] 0.92 0.69 0.55 0.19 

G [dB] 4.12 4.52 4.74 5.3 

If we take into consideration that signal to noise ratio of 
optimal scalar vector quantization is 41.7 dB for 8 bits per 
sample, we see that obtained gain with our quantizer G = 
SQNR – 41.7 dB is large (the last row of Table I). 

 
III. CONCLUSION 

 
In this paper we perform an exact and complete asymptotic 

analysis of optimal product pyramid Z
n-1 lattice vector 

quantization of memoryless Laplacian source. We derive the 
expressions for the optimal hyperpyramid number, the optimal 
total distortion and the optimal multidimensional companding 
characteristic. The presented analysis is very simple and 
convenient for implementation. Opposite to classical product 
pyramid lattice vector quantization the hyperpyramides during 
this quantization are not equidistant which enables us 
determination optimal multidimensional radial companding 
characteristic.   

Results show that suggested quantization model gives the 
signal to quantization noise ratio which in some cases differs 
from that of optimal vector quantization for about 0.5 dB. It 
proves that optimal product pyramid Z

n-1 lattice vector 
quantization in comparisson with the unrestricted optimal 
vector quantization has a little worse performances but the 
lower implementation complexity. In order to simplify 
implementation of considered vector quantization, the model 
should be linearized applying the piecewise uniform product 
vector quantizer.  
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