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Theoretical Analysis as a Function of the Total Q Factor
Loudspeaker Characteristics

Ekaterinoslav S. Sirakov '

Abstract — This work considers researching of the following
characteristics of a directly radiating electrodynamic loudspea-
ker as a function of the total Q factor: frequency response of the
amplitude and phase of the sound pressure created, of the group
time delay, of the module and the complex impedance.

For the purposes of the theoretical analysis of the above
loudspeaker characteristics depending on the responses of the
total Q factor, three regions are considered, where equations
describing the output signal at input excitation - Heaviside
function - are offered for each of them.
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The transitional function of a loudspeaker and a closed-box

loudspeaker system [1+7] can be described by the following
equation (1):
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Fig. 1. Normalized Amplitude-Frequency Response of the Sound
Pressure Created by the Loudspeaker (Q=0.3+2)

This function is analogical to a second-order high-pass filter
(40 dB/dec. cutoff).
Where: s =0 +i@ is the complex frequency variable,

f, is the resonance frequency (@, =2.7.f,) of the

loudspeaker.
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Fig. 1 shows the normalized characteristic of the sound
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function of the frequency normalized to @, =2.7.f; - in a
logarithmic scale - and the total Q factor (Q=0.3+2).

These responses for Q greater than 1/ x/E ie. 0.7071 are
second-order Chebyshev equal-ripple alignments [1].

ForQ =0.7071 (i.e. 1/ x/E ) is a second-order Butterworth

maximally-flat alignment.
For Q0 =0.5 is a second-order Linkwits-Riley alignment

pressure created by the loudspeaker 20.log as a

The responses for O =0.3+0.7 are second-order alignment
for real world loudspeakers.

Table 1 shows the DYNAUDIO loudspeakers parameters
[16].

Loud- fs Qts Iw/1m W to fs
speaker [Hz] dB dB
T-330D 750 | 0.2 |92 -10
D-21 AF 1300 | 0.41 | 91 -4
D-28/2 880 | 0.41 | 89 -5
D-260 1000 | 0.48 | 90 -4
M-560D 325 1035 | 91 -5
D-52 AF 350 | 04 | 88 -6
D-54 AF 325 1 0.3 92 -7
D-76 AF 350 | 0.9 89 0
17 W-75XL 42 | 0.44 | 89 BOX
24 W-75 32 1035190 BOX
30 W-54 22 1036 | 92 BOX

Table 1. DYNAUDIO Loudspeaker parameters [16]

Where:

fs [Hz] is the loudspeaker resonance frequency,

Qts — total Q factor,

1w/1m — sensitivity - i.e. the sound pressure created - in dB
— along the axis of radiation at a distance normalized to 1m
and 1W power supplied to the loudspeaker.

W to fs — loudspeaker sensitivity for the resonance frequent-
cy, fs, in dB.

The first four lines of Table 1 apply to high-frequency
(tweeter) dome loudspeakers (T-330 D, D-21 AF, D-28/2 and
D-260), and then follow the parameters of middle-frequency
dome loudspeakers (M-560D, D-52 AF, D-54 AF AND D-54 AF).
They are designed as closed-box systems and their Producer's
brochures list the so called Thiele/Small parameters and
characteristics [16].

The parameters of the low-frequency (woofer) loudspea-
kers (17 W-75XL, 24 W-75 and 30 W-54) determine the selection
of the BOX: closed-box, variovented box, bass-reflex, trans-
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mission line, band pass, etc. The selected box and the actual
loudspeaker, they both determine the parameters and the
characteristics in the low-frequency region [1+7].
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Fig. 2. Normalized frequency response of the phase of the sound
pressure created by the loudspeaker where Q factor is the parameter.

The phase of the sound pressure created by the loudspeaker,
as a function of the total Q factor, is plotted in Fig. 2.
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The displacement of the loudspeaker voice-coil, as defined
by formula (3) is analogical to a function of a low-pass
second-order filter.
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Fig. 3. Normalized voice-coil displacement of the loudspeaker

as a function of normalized frequency response for parameter total
Q factor.

Fig. 3 shows the normalized voice-coil displacement magni-

tude 20.log|X [;)_E,Q] with frequency normalized to @, as
a function of the total Q factor.
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The group time delay can be defined as:
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Fig. 4. Frequency response of the group time delay of a loudspeaker,
where parameter is the Q factor.

The equation [1+7], which defines the input impedance,
includes the sum of the voice-coil electrical impedance
R,+iwL, and the inserted impedance of the loudspeaker
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where: R, is the voice-coil DC resistance,
L, - voice-coil inductance,
B.L - force factor magnet system,
r - mech. resistance,
m - moving mass,
c - suspension compliance.
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Fig. 5. Magnitude of the loudspeaker impedance depending
on the normalized frequency as a function of the Q factor.
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Fig. 6. Complex Impedance (Nyquist plots)

Loudspeaker Step Response

The input step function is:

D(1)=if (¢ <0,0,01) (6)
The excitation is the Heaviside function for which the
Laplace transform is 1/ s [8].
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With the program MathCad symbolic transform [13,14],
invlaplace, from the step function (1) we find an equation
which describes the sound pressure created by the loudspeaker
as a function of time with single input excitation and Q factor
- a parameter:
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The following three spaces can be defined depending on the
values of the total Q factor:

1. Damped oscillation - at Q>0.5

Ourl(r) = " Jeos(ayt) - ary sin(ap ) Jo 1) (8)
(ZI =
U 4—
2. Critical value - at Q=0.5
our2(t) =1 [i-1}o(0) )
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Fig. 7. Normalized step response of a loudspeaker at Q=0.501,
0.7071, 1, 1.414 and 2, according to Eq. (8).

3. Aperiodic damping at Q<0.5

Ourd(r) = fe~%" [cosh(ar, 1) - a5 sinh(@, )}@@)  (10)
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Fig. 8. Normalized step response of a loudspeaker
at Q=0.1, 0.2, 0.3, 0.4 and 0.499... according to Eq. (10)
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Fig. 9. Normalized step response of a loudspeaker at Q=0.3, 0.5
and 2, according to Egs. (8), (9) and (10).
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Outl{t), Out2(t) and Out3()

Fig. 10. 3D Normalized step response of a loudspeaker at Q=0.1+2,
according to Egs. (8), (9) and (10).

CONCLUSION

The value of the total Q factor Q=0.5 appears to be critical
for the analysis of the loudspeakers step response. The sound
pressure created can be described with equation (9), and Fig. 9
shows the normalized step response.

The loudspeaker step response at Q>0.5 is with specific
damped oscillations with the frequency of the mechanical
resonance. Real world high-quality loudspeakers with a total
Q factor of (0.5<Q<2) are hardly ever offered by producers.

Values of the Q factor within 0.1<Q<0.5 are typical for the
real world high- and middle-frequency dome and low-
frequency loudspeakers (see Table 1). Their step response can
be described with Eq. (10), and the normalized step responses
in Fig. 8 and Fig. 10 are marked with aperiodic damping of
the signal.

The results obtained in this work can be used for theoretical
analysis, design and production of loudspeakers, closed-box
systems, etc.

(1]

REFERENCES

Small R. H., "Closed-Box Loudspeaker Systems Part I:
Analysis," J. Audio Eng. Soc.,, vol. 20, Number 10, pp. 798-
808, (1972 Dec.).

[2] Boaues, UB. U., “Enexrpoakyctuxa”, JbpaKaBHO H31ATEICTBO

(3]

(4]

(5]
(6]
(7]

(8]
(9]

"Texuuka", Codus, 1975r.
W. Marshall Leach “Loudspeaker driver phase response: the
neglected factor in crossover network design” 64™ Convention
November 2-5, 1979, New York City

Anpmommmua W.A., A.J.Boiimusmuio “BricokokauecTBEHHBIE
aKyCTHUYECKHE CHCTeMbl U u3iydarenu’, Mocksa, Paguo u
cBs13b, 1985, cTp. 64-102.

Iomsues, M. &. “Enexrpoaxycrmunm npeobOpasysaTenn’,
JwpxasHo m3narencto "Texuuka", Codus, 1988r.

EBcratueB I'. "PwkoBogctBo 3a 1mab. ymp. mo OcHOBH Ha
3BykoTexHukara" TY, Bapua 1990r.

M. MomuemxkukoB u CH. [Inenikosa, “PbpkoBoacTBO 3a abopa-
TOPHH YIpPaXHEHHS II0 OCHOBH Ha 3BYKOTEXHHKaTa’, U3Ma-
tenctBo “Hosu 3Hanums”, Codust, 1999r.

Poularikas Al. D, The Handbook of Formulas and Tables for
Signal Processing, CRT Press LLC, 1999.

Sirakov Ekaterinoslav S.,Atanaska A. Angelova and Georgi K.
Evstatiev, Transitional characteristics of the Loudspeaker
systems, ICEST 2003, 16-18 October 2003, Sofia, Bulgaria, pp
241+242.

[10] E.C. Cupaxos. RLC - Bepuru 3a cbrilacyBaHe UMII€IaHCa Ha

BHCOKOTOBOpUTEN. “Hayuno-mexnuuyecko cnucanue /ISSN 0861 -
4717/ “Enexmpomexnuxa u Enexmponuxa”, 6p. 1+2, 2001r.
cTp. 49+53.

[11] E.C. CupaxoB. Makpo-MoenupaHe Ha eJIEKTPOIUHAMUYCH

BHCOKOTOBOPHTEI C IUPEKTHO M3Tb4BaHe B Spice opmar.
“Proceedings of the Intern. Scient. Conf. of Energy and
Information Systems and Technologies 2001 (EIST)”, June 7-
8,2001, Bitola, Rep. of Macedonia, vol. II, pp. 494-499.

[12] A.A. Angelova, E.S. Sirakov, G.K. Evstatiev. Theoretical

analysis of Frequency, Pulse and Transitional characteristics of
Loudspeaker (Part I). “XXXIX Int. Scientific Conference of
Information Communication. ICEST 2004, 16+19 June 2004,
Bitola, Macedonia, pp. 737+738.

[13] http://www.mathcad.com/
[14] http://model.exponenta.ru/

[15] http://www.tu-varna.acad.bg/11/12/fe/RTT/eng.html
[16] Brochures of DYNAUDIO, Morel, Fokal and Audax.

211




