
29 June – 1 July 2006, Sofia, Bulgaria

221

Using String Comparing Algorithms for Serbian Names

Petar J. Rajković1, Dragan S. Janković2
, Dušan M. Vučković3

 Abstract – String matching algorithms are widely used in many

areas. Some of them are adapted for special languages and

special type of words, as for example, person names or company

names. We have researched the possibilities of using string

matching algorithms on Serbian names. Report about it is

presented in this paper. As we expected and as experiments

show, some of phonetic algorithms are not suitable for Serbian

names. On other side, distance measure based algorithms can be

applied. Our results are good starting point for modification of

existing or constructing of a new algorithm suitable for Serbian

language.

 Keywords – String matching algorithm, code resulting, simila-

rity resulting, Serbian names, comparing strategies.

I. INTRODUCTION
12

Government and commercial organizations are increasingly

required to store, maintain, search and match identity data

from many nations and numerous languages. A variety of

algorithms have been published to allow approximate verbal

matches to be found in documents or databases. In each case,

the user specifies a word and the system retrieves records

containing similar ones.

The reasons for wrong typed words in some text in general

are typing errors and spelling errors. The most frequent typing

errors are: deleted letter, inserted letter, replaced two letters,

added letters, removed letters, used abbreviations, split words,

joint words, etc. For different kinds of typing errors has been

developed different kinds of algorithms. Some of them detect

a set of above numbered errors.

Two main classes of algorithms can be distinguished: those

that determine word similarity by examining the order of the

letters, and those that rely principally on phonetics. The

second class of the algorithms depends strongly of the chosen

language. Also, there are the combinations of above two

approaches (for example editex algorithm [1]).

The most of the phonetic algorithms are constructed and

adapted for English names. So it is interesting to investigate

the applicability of these algorithms on Serbian languages and

especially on names.

So we developed program for the most known string

matching algorithms from both kind phonetic and distance

matching (Jaro – Winker, Levenstein, NYSIIS, Metaphone,

Double metaphone, different SoundEx algorithms, etc) and

apply them on Serbian names. Results are reported.

1 Petar J. Rajković is from Faculty of Electronic Engineering, Beogradska 14,

18000 Niš, Serbia & Montenegro, E-mail: rajkovicp@elfak.ni.ac.yu
2 Dragan S. Janković is from Faculty of Electronic Engineering, Beogradska

14, 18000 Niš, Serbia & Montenegro, E-mail: gaga@elfak.ni.ac.yu
2 Dušan M. Vučković is from Faculty of Electronic Engineering, Beogradska

14, 18000 Niš, Serbia & Montenegro, E-mail: dvuckovic@elfak.ni.ac.yu

Our future work will be upgrading of presented algorithms

in order to become more suitable for Serbian language, as well

as, enlarge our test base.

II. USED ALGORITHMS

For implementing our string matching application we used

two different kinds of algorithms – similarity based and code

resulting algorithms. From the group of similarity based we

have tested Jaro – Winkler and Levenstein, and from group of

code resulting methods we have used NYSIIS, Metaphone,

and different implementation of SoundEx algorithms (Daitch

Mokotof, and four standard modifications – Miracode,

Simplified, SQLServer, and Knuth Ed2).

Jaro Winkler algorithm is a kind of a measure of similarity

between two strings. The Jaro measure [2] is the weighted

sum of percentage of matched characters from each file and

transposed characters. Winkler increased this measure for

matching initial characters, and then rescaled it by a piecewise

function, whose intervals and weights depend on the type of

string (first name, last name, street, etc.). This is an extension

of the Jaro distance metric, from the work of Winkler in 1991

to 1999 [3].

Levenshtein algorithm is based on calculating distance that

is obtained by finding the simplest way to transform one

string into another [4]. Transformations are the one-step

operations of (single-phone) insertion, deletion and

substitution. In the simplest versions substitutions cost two

units except when the source and target are identical, in which

case the cost is zero. Insertions and deletions costs half that of

substitutions. On the base of these values similarity is

computed according the length of the source string.

NYSIIS is a member of group phonetic coding algorithms.

Basically, it has been used to convert a name to a phonetic

coding of up to six characters [5]. Now, NYSIIS codes can be

larger than six characters. NYSIIS is the short form of the

New York State Identification and Intelligence System

Phonetic Code. It features an accuracy increase of 2.7% over

the traditional SoundEx algorithm. It is a pretty simple

algorithm described in Name Search Techniques, New York

State Identification and Intelligence System Special Report

No. 1, by Robert L. Taft, is and it has some seven steps that

converts word to string that represents its code.

Metaphone (we use its double metaphone variant) is an

algorithm to code English words (and foreign words often

heard in the United States) phonetically by reducing them to

12 consonant sounds [6]. This reduces matching problems

from wrong spelling in English language.

Soundex is a phonetic algorithm for indexing names by

their sound when pronounced in English [7]. The basic aim is

for names with the same pronunciation to be encoded to the

Using String Comparing Algorithms for Serbian Names

 222

same string so that matching can occur despite minor

differences in spelling. Soundex is the most widely known of

all phonetic algorithms and is often used (incorrectly) as a

synonym for "phonetic algorithm". Soundex was developed

by Robert Russell and Margaret Odell and patented in 1918

and 1922. A variation called American Soundex (U.S.

SoundEx) was used in the 1930s for a retrospective analysis

of the US censuses from 1890 through 1920. The Soundex

code for a name consists of a letter followed by three

numbers: the letter is the first letter of the name, and the

numbers encode the remaining consonants. Similar sounding

consonants share the same number so, for example, the labial

B, F, P and V are all encoded as 1. Vowels can affect the

coding, but are never coded directly unless they appear at the

start of the name.

The one of the latest significant improvement of basic

SoundEx is the Daitch-Mokotoff algorithm. In 1985, this

author indexed the names of some 28,000 persons who legally

changed their names while living in Palestine from 1921 to

1948, most of whom were Jews with Germanic or Slavic

surnames. It was obvious there were numerous spelling

variants of the same basic surname and the list should be

soundexed. It is a modification to U.S. SoundEx.

III. TESTING

In order to test all previously described algorithms we have

develop simple Windows based application in Visual Studio

2003, using C#.Net named Word matcher. We have

implemented Jaro – Winkler and Levenstein similarity

algorithms, as well as following code resulting methods:

NYSIIS, Metaphone (as Double Metaphone), Caverphone,

Daitch Mokotoff SoundEx, and four variants of standard

SounEx algorithms (Knuth Ed2, Simplified, Miracode, and

SQLServer SoundEx).

This application provides us possibility to test two words or

two sentences (Figure 1), or one word (or sentence) with

strings from some source file (Figure 2). Source files only

have to be placed in the same folder with executable file and

they will be loaded. The comparison results can be saved in

the text file and processed later.

For example of usability of previously described algorithms

we will present results of testing similarity of last name

Jankovic. All testing results are presented by tables that are

consisted of three columns – the count of found similar words,

minimal similarity (in percents), and duration of this operation

in seconds. All tests are done on computer with Pentium

Mobile processor on 1.8 GHz with 512MB of RAM.

The source for this testing is text file that contains list of

22505 different words. The list members are first names, last

names, names of settlements and other commonly used words

that are collected by different organization in Serbia and

Montenegro. Some of them are written using Serbian alphabet

specific characters (š, č, ć, đ, ž) and some of them are written

using English alphabet. The large number of the collected lat

names is presented on both two ways (e.g. you can find both

Rajkovic and Rajković in the list).

Fig. 1. Comparing two words by selected method

Fig. 2. Comparing certain word with all words from specific file by

selected method

In the following text different comparing strategies are

tested and some of testing results are presented. Generally,

there are four strategies for testing similarity between two

strings:

• Exact matching – comparing two strings in order to

determine if they are equal.

• Using similarity method – comparing two strings

using some algorithm that will return us some value

(between 0 and 1) that will be information about

similarity level.

• Using code resulting method – comparing codes that

are generated by using some code resulting

algorithm, in order to determine if they are equal.

• Using similarity for generated codes – apply

similarity method to determine level of similarity of

passed strings’ phonetic codes.

When comparing one word (test word) with the list of

words we will obtain, as a result, the list of the words with

Petar J. Rajković, Dragan S. Janković, Dušan M. Vučković

 223

similarities corresponding to test word. In the case when

comparing list has 2000 words, list of results will have 2000

results. In order to reduce the size of resulting list we should

determine some kind of threshold for placing certain word to

the list of the results. And this threshold is the level of

minimal similarity. If we want to use matching strings by

similarity for some spelling helper we need result list with not

more than 10 to 12 words. If we want to solve this kind of

problem we have to use matching string by similarity,

otherwise exact matching will provide us only one solution –

the searched word. The results of using Jaro – Winkler and

Levenstein similarity methods are presented in following two

tables.

TABLE 1. THE RESULTS OF COMPARISON OF WORD JANKOVIC WITH

REPRESENTATIVE LIST OF NAMES USING JARO – WINKLER SIMILARITY

METHOD

Found similar

words (count)

Minimal similarity

level (percent)

Duration

(seconds)

1270 70 0.375

416 75 0.21875

164 80 0.203125

36 85 0.1875

13 90 0.171875

6 95 0.171875

1 99 0.171875

TABLE 2. THE RESULTS OF COMPARISON OF WORD JANKOVIC WITH

REPRESENTATIVE LIST OF NAMES USING LEVENSTEIN SIMILARITY

METHOD

Found similar

words (count)

Minimal similarity

level (percent)

Duration

(seconds)

24 70 0.171875

7 75 0.15625

3 80 0.15625

3 85 0.21875

1 90 0.15625

1 95 0.15625

1 99 0.15625

As it has been discussed in previous part of this paper

critical measure for discussed problems is setting of minimal

similarity in order to obtain list of synonyms that has

reasonable number of members (less then 10). The Jaro –

Winkler algorithm returns following words when minimal

similarity is set on 95%: jankov 0.967, jankovic 1, janković

0.967, jankovica 0.954, jankovići 0.954, and jankovi 0.983.

Each word is followed by its similarity level with word

jankovic. Comparing word rajkovic with mentioned list of

names will return six words for minimal similarity of 95%

(rajkov 0.967, rajkovica 0.954, rajkovići 0.954, rajkovac

0.967, rajković 0.967, and rajkovci 0.983) and 14 words for

90%. On the base of comparing of many other Serbian last

names we could say that “reasonable” threshold for minimal

similarity level for Jaro – Winkler method should be set on

some value between 90 and 95%. By example, the level of

92% will return list of 10 similar words with word rajkovic

and 8 similar words with word jankovic.

In the case of Levenstein alghorithm minimal similarity

level could be set on lower percent number – 70 to 80 percent.

For word jankovic and threshold of 75% our testbench

application returns seven words: jankovic 1, stankovic 0.778,

janković 0.875, jankovica 0.778, jankovići 0.778, janaković

0.778, jankovi 0.875. For similarity of 70% the number of

similar words is 24. Testing Levenstein algorithm on word

rajkovic returns 3 words (rajkovac 0.875, rajković 0.875, and

rajkovic 1) for 80% threshold, 10 words (brajković 0.778,

brajkovac 0.778, raškovice 0.778, rašković 0.778, rajkovic 1,

ranjković 0.778, rajkovac 0.875, rajković 0.875, rajčković

0.778, trajković 0,778) for 75% and 35 words for 70%.

When using code resulting algorithms the results are little

bit different. Next table (table 3) shows number of matching

for different code resulting algorithms. The main idea in this

kind of matching is find specified phonetic code for supplied

word and get all words from list that has exact code.

TABLE 3. THE RESULTS OF COMPARISON OF WORD JANKOVIC WITH

REPRESENTATIVE LIST OF NAMES USING DIFFERENT CODE RESULTING

METHODS

Used algorithm Number of

matching

words

Duration

(seconds)

NYSIIS 1 0.625

Metaphone 17 0.1875

Daitch Mokotof

SoundEx

4 49.421875

Knuth Ed2 SoundEx 19 0.15625

The NYSIIS code returns only one word (jankovic), but it is

not so desirable result. The Daitch – Mokotof SoundEx

algorithm has found more reasonable number of similar words

(4 – jankovic, smokvice, smokovac, smokovica), but it took too

much time for this operation and found words that are not

adequate for Serbian language. Knuth Ed2 Soundex (found 19

words – jankov, jankovic, janković, johanesburg, jankovica,

janjevići, jankovići, junkovica, janjušević, junković, janjevica,

janjuševica, janaković, janićijević, jankovi, junaković,

junuzovci, jankovići, janjević) and Metaphone (17 words –

jankov, jankovic, janković, anković, jankovica, jankovići,

junkovica, junković, inković, inkovići, janaković, jankovi,

junaković, onković, jankovci, unkašević, unković) are fastest

and produce more reliable results than NYSIIS and

DMSoundEx. The only problem here is that Knuth Ed2

Soundex and Metaphone return more word that users usually

expect.

On the base of larger number of examples we have found

that the most suitable code resulting algorithm for Serbian

words is Metaphone. Metaphone is little bit slower than Knuth

Ed2 SoundEx, but it is able to provide the most acceptable

lists of similar words. Also, in some cases, union between

Metaphone’s and Knuth Ed2 SoundEx’s resulting lists can be

best solution. The problem with large lists of synonyms also

remains. When comparing word rajkovic the results are: one

synonym for NYSIIS, 8 for Metaphone, 12 for DMSoundEx,

and 18 for Knuth Ed2 SoundEx.

Using String Comparing Algorithms for Serbian Names

 224

The usage of the NYSIIS algorithm for comparing Serbian

names (and the other words) can be improved if strategy

“compare codes by similarity” is used. This kind of compa-

ring strategy introduces two – level comparing technique.

When one wants to compare two words, he can determine

codes for these words (on the first level), and, after that he can

calculate similarity between codes. By this way, one can

enlarge set of found words. Following tables proves this

claim.

TABLE 4. THE RESULTS OF COMPARISON OF WORD JANKOVIC WITH

REPRESENTATIVE LIST OF NAMES USING COMBINATION OF NYSIIS CODE

RESULTING METHOD AND JARO – WINKLER SIMILARITY METHOD

Found similar

words (count)

Minimal similarity

level (percent)

Duration

(seconds)

2390 70 1.15625

1008 75 1.015625

447 80 0.90625

135 85 0.875

9 90 0.90625

8 95 0.875

1 99 0.828125

TABLE 5. THE RESULTS OF COMPARISON OF WORD JANKOVIC WITH

REPRESENTATIVE LIST OF NAMES USING COMBINATION OF NYSIIS CODE

RESULTING METHOD AND LEVENSTEIN SIMILARITY METHOD

Found similar

words (count)

Minimal similarity

level (percent)

Duration

(seconds)

134 70 0.8125

12 75 0.796875

7 80 0.78125

7 85 0.828125

1 90 0.828125

1 95 0.8125

1 99 0.8125

As one can notice, the minimal similarity level for using

Jaro – Winkler similarity method in combination with NYSIIS

coding algorithm is 90% and above (for 95% results is jankov,

jankovic, janković, jankovica, jankovići, junkovica, junković,

jankovi). When using Levenstein instead of Jaro – Winkler

similarity metric mentioned threshold is about 75% (for 80%

resulting words are jankovic, janković, jankovica, jankovići,

junkovica, junković, benkovac). Using Levenstein similarity,

also, gives to us a better time based result. The time

performance of this calculation can be improved if could all

words from list of Serbian terms be placed in some kind of

Hash – table, which hash – key would be NYSIIS code.

According these tables and previous discussion we can

assume that combination NYSIIS + Levenstein gives the most

appropriate results for Serbian names comparison.

V. CONCLUSION

 This paper presents an overview of well known string

matching algorithms (that are generally divided in two groups

– similarity and code resulting) and, in the same time,

explores their possible application for Serbian and other

Slavic names. At this point no solution like this could be find

in Serbia. For testing purposes we’ve used some demo base

that contains about 2500 Serbian last names and names of

settlements. Different comparing strategies are tested: com-

paring names by similarity (using Jaro – Winker or Levenstein

algorithms), comparing names by their phonetic codes directly

(NYSIIS, Metaphone, different SoundEx codes) or calculating

similarity between codes in order to enlarge set of results. By

all previously presented information we can agree that the

most of technique are suitable for desired application. In the

further work, we will try to upgrade presented algorithms in

order to become more suitable for Serbian language, as well

as, enlarge our test base.

REFERENCES

[1] Justin Zobel, Philip Dart, "Phonetic String Matching: Lesson

from Information retrieva" , In Proc. 19th Inter. Conf. on

Research and Development in Information Retrieval (SIGIR'96),

pages 166--172, Aug. 1996.

[2] Matthew A. Jaro, Advances in Record-linkage Methodology a

Applied to Matching the 1985 Census of Tampa, Florida,

Journal of the American Statistical Association, 89:414-420.

[3] William E. Winkler, Yves Thibaudeau, An Application of the

Fellegi-Sunter Model of Record Linkage to the 1990 U.S.

Decennial Census, Statistical Research Report Series RR91/09,

U.S. Bureau of the Census, Washington, D.C., 1991

[4] Peter Kleiweg, „Implementation and Visualization of Levenstein

Algorithm“, the article taken from url

http://www.let.rug.nl/~kleiweg/lev/levenshtein.html

[5] Paul E. Black, "NYSIIS", from Dictionary of Algorithms and

Data Structures, Paul E. Black, ed., NIST.

http://www.nist.gov/dads/HTML/nysiis.html

[6] Lawrence Philips Metaphone algorithm, the article taken from

http://aspell.net/metaphone/

[7] How To: Understanding Classic SoundEx Algorithms, the artic-

le taken from http://www.creativyst.com

/Doc/Articles/SoundEx1/SoundEx1.htm

