
29 June – 1 July 2006, Sofia, Bulgaria

246

A Flexible Architecture for Customizable Web Based

Spreadsheet Engine
1

Ivo Marinchev
2

Abstract – In this paper we introduce a flexible architecture

for development of scalable, and customizable web based

spreadsheet engines. Our architecture is geared towards new

trends and technologies in application development as web

services, rich clients, AJAX, web applications, etc. Finally we

present our current implementation developed as AJAX based

web application that uses relational database for persistence

storage.
12

Keywords – spreadsheet engine, AJAX, web applications, web

services, rich-clients, web 2.0.

I. INTRODUCTION

In the last few years there is a trend to “web enabling”

(applications that can be started and run through web browser)

of the current desktop software applications. New ones are

directly built as web application and many old one are re-

implemented or extended as web based.

The first distributed applications with centralized business

logic (backend) were rich-client applications. They require

more sophisticated and responsive user interface (than what

HTML, CSS, and JavaScript can offer at that time) that run on

the user’s computer and communicates with a business logic

that is physically located on the centralized servers. Rich

client applications and technologies appear about 10 years ago

but could not become widespread. They remain in use mainly

in intranet environment inside the organizations or shared

between affiliate organizations. Their failure to become

widespread was due to many factors some of which are:

• they require the users to install additional software on

their systems;

• security concerns;

• not having enough support from big application ven-

dors;

• high price tag.

The most prominent technologies in this area are

Microsoft’s ActiveX, Java Web Start (JWS), Eclipse Rich

Client Platform (Eclipse RCP), and Macromedia Flex.

Recently widespread adoption of web applications became

feasible with the introduction of several key technologies in

practically all of the modern web browsers - Internet Explorer,

Firefox, Mozilla, Opera, Safari, and Konqueror. These

technologies are CSS [3, 4], JavaScript [5], DOM [6] and

DHTML (dynamic screen re-flow). Although most of them

had reliable implementations even in year 2000 the biggest

1 The work report in this paper has been partially supported by Project

IIT-010061 “Technologies of the Information Society for Knowledge

Processing and Management”.
2 Ivo Marinchev is with the Institute of Information Technologies,

Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 29A, 1113 Sofia,

Bulgaria. E-mail: ivo@iinf.bas.bg

boost started just recently with the introduction of so named

XMLHttpRequest [2] object. It allows web pages (using

JavaScript) to perform asynchronous request to their

originating server and fetch updated data from it. On the next

step these data is used to update part of the web page

information in timely and responsive manner without

requiring page reloads. As the XMLHttpRequest object has

support for transferring data in the XML format

(presentation/view neutral encoding) the corresponding

technology was named AJAX [2] (Asynchronous JavaScript

And XML). Hence it becomes possible to develop web

applications that look and feel in a way very similar to the

regular desktop ones and provide the user with similar usage

experience and capabilities. Keeping the business logic on the

centralized servers (usually cluster of servers), allows easier

management, support maintenance, and upgrades. Also, new

schemes of application delivery and usage becomes feasible

as pay-per-use, application service providers, click-and-run

(no installation is required), application delivered as a service,

etc.

The first widespread web applications were Google Mail

(http://www.gmail.com) and Flickr (http://www.flickr.com).

Another application are web applications are Writely

(http://www.writely.com) word processing application (re-

cently March 2006 bought by Google), calendar – 30 boxes

(http://www.30boxes.com), CalendarHub (http://www.calen

darhub.com).

II. MOTIVATION AND BASIC REQUIREMENTS

In the field of web based spreadsheets applications the key

players are NumSum (http://www.numsum.com), and iRows

(http://www.irows.com), open source applications TrimSprea-

dsheet (http://trimpath.com/project/wiki/Trim Spreadsheet),

WikiCalc (http://www.softwaregarden. com/wkcalpha). Unli-

ke the rest of the web applications, at the time of this writing

(March 2006), web spreadsheets are not feature complete,

built for specific purposes and non-customizable. Open source

ones are mostly unusable and are actually just a proof of

concept that the real applications.

Above observations have motivated us to build web based

spreadsheet engine to solve our specific needs and to be able

to extend and customize it as needed. The requirements for

our spreadsheet system are:

1. It must be web based - many different people can use it

from any physical location provided internet

connection is available.

2. It must be component based – consisting of logically

separated software units with well-defined interfaces

and behavior.

Ivo Marinchev

 247

3. It must be loosely coupled – every component must be

easily replaceable, and must not depend on the rest of

the components as much as possible.

4. It must be scalable – can scale up and down with

minimal changes.

5. It must support different user roles (groups) - some

users can design and edit spreadsheets’ definitions

(designers). Regular users can just fill the data in the

cells that are not locked.

6. Entered data must be kept separated from the

spreadsheet definitions so that it can be reused in diffe-

rent spreadsheets and/or other related applications.

7. Ajax version must be able to work on IE and Firefox. If

it is possible Opera and Safari must be supported as

well.

8. The system must be able to import MS Excel

spreadsheets and convert them into its internal form –

reuse already created spreadsheets and use MS Excel

as a primary design tool until comparable web based

spreadsheet designer is developed.

III. SYSTEM ARCHITECTURE

Fig.1 depicts the architecture of our system. It is compliant

to the requirements enumerated above and, in practice, is 4-

tiers (layers) system that comprises the following layers:

1. User interface layer. It consists of all of the software

components that are transported through the network to

the user system and executed on it. In this layer there

are basically two type of implementations – Ajax based

that run from the regular web browsers or rich client

interface (for example JWS or Eclipse RCP). This

layer communicates to the next layer using standard

open communication protocols that have HTTP

transport (so that the clients can be used behind

firewall).

2. Web layer. It consists of software components that are

executed in the web server environment. These

components can be CGI scripts, PHP pages, Java

servlets, JSP pages, etc. or even web services

implemented in any programming language.

3. Application layer. It represents the main application

business logic. It comprises all algorithms and internal

data structures that are involved in spreadsheets

management and processing

4. Persistent storage layer. It is a set of databases (Rela-

tional and/or XML) that organize the information on

the persistent media.

In practice, in case of small deployment scenarios, it is

possible the Web layer to be merged with the Applications

layer. For example we have such situation when the

application layer is implemented using web services (SOAP

or REST) that are consumed directly from the user interface

layer. This possibility of layer merging is a key feature of any

systems that is projected to scale up and down.

Fig. 1. System architecture.

As Fig.1 shows, all system’s layers are very loosely

coupled and communicate only with open and standard

complaint protocols. This feature makes the system to be

completely agnostic to hardware and software platforms that

execute its components. In practice any client part and any

server part can be executed on different operating system

allowing almost any available hardware to be used as a client

or a server.

User Interface Layer

Application Layer

Persistent Storage Layer

Web Layer

HTTP

SOAP

REST HTTP

SOAP

REST

HTTP

SOAP

REST

HTTP

SOAP

REST
HTTP

SOAP

REST

HTTP

SOAP

REST

SOAP

RMI

Remoting

SOAP

RMI

Remoting

SQL

XPath

XQuery

SQL

XPath

XQuery

A Flexible Architecture for Customizable Web Based Spreadsheet Engine

 248

IV. SYSTEM IMPLEMENTATION

The current version of the system is implemented as a

standard 3-tier web application. Technical specifications are

as follows:

1. User interface layer. JavaScript library that uses Ajax

requests to update and fetch data from the web layer. It

works on IE (5.5, 6.0), Firefox (1.0, 1.5) and to some

degree on Opera (8.5). It is possible to build Java Web

Start client in the future.

2. Web layer. At the moment it consists of PHP pages

(convenient only for stateless services) and Java

servlets (better scalability, applicable for statefull

services that use big data models). Current

implementation uses REST [1] services. Although

REST is not a standard but an architectural style, its

light-weighted, requires fewer resources, and is simpler

and faster for quick-and-dirty implementations. Later

we can convert inter-layer communications to the

complete SOAP, WSDL, WS-I stack if it is needed.

This layer contains all of the algorithms and data

structures that dynamically build user interface pages

(screens) of the system. It is also responsible for

getting and validating request parameters from the user

interface layer and reformatting the response data if it

is needed.

3. Application layer. In the current deployment scenario

this layer is merged with the web layer because there is

no need for separated web and application layers in the

small size deployments. This layer contains all of the

algorithms and data structures that implement the core

business logic. Upon client requests (coming from the

user interface layer) it fetches the data from the

persistent storage layer and builds internal data model

of the manipulated spreadsheets. Then it uses these

data models to re-calculate the spreadsheets values

based on the user changes and sends the updated data

(user changes) back to the persistent storage layer and

forth (recalculated fields values) to the user interface

layer.

4. Persistent storage layer. Uses relational database

storage. It was tested with MySQL and SQL Server,

but as it uses standard SQL queries it should work with

any complaint relational database system.

Figures 2, 3, and 4 depict a visual demonstration of our

system. Fig. 3 shows a complex spreadsheet opened within

MS Excel that we used for testing purposes. Fig. 4 shows a

screenshot from the same spreadsheet converted to the format

of our system loaded in it and then opened in Internet

Explorer. Fig. 2 shows one of the unique features of our

system its - ability to show the formula as tooltip when the

mouse hovers over the corresponding cell.

Fig. 2. Some of the new features in our system – shows formulas as

tooltips

Fig. 3. Complex Spreadsheet in Excel

Ivo Marinchev

 249

Fig. 4. The same spreadsheet from Fig. 2 in IE

V. CONCLUSION AND FUTURE WORK

In this paper we presented our flexible architecture for

development of scalable, and customizable web based spread-

sheet engines. We presented also our concrete implementation

of this architecture. Below we itemize some of the

improvement and additions that have to be implemented in

near future in order to make the system applicable in wider

task scopes:

1. Improve the support of some of the alternative

browsers as Opera and Safari that currently do not

work due to bugs in their DOM implementation. Opera

works with simple spreadsheets but not with our

complex one.

2. Implement more of important MS Excel features that

are still missing.

3. Add some unique features as the ability to use CGI

scripts or web services in formulas. One example of

this is getting weather conditions, exchange rates,

interest rates, stock quotes, etc. in real-time.

4. Many other optimizations and improvements.

REFERENCES

[1] R. Fielding. Architectural Styles and the Design of Network-

based Software Architectures. PhD Thesis, University of

California, Irvine, 2000

[2] AJAX, http://en.wikipedia.org/wiki/AJAX

[3] CSS1 Specification, http://www.w3.org/TR/REC-CSS1/

[4] CSS2 Specification, http://www.w3.org/TR/REC-CSS2/

[5] ECMA-262, ECMAScript (JavaScript Specification),

http://www.ecma-international.org/publications/standards/

Ecma-262.htm

[6] W3C Document Object Model, http://www.w3.org/DOM/

