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     Abstract – This paper considers the Neural Network (NN) 

based smart antenna solution for both Direction Of Arrival 

(DOA) estimation and null-steering beamforming, providing a 

complete NN solution. The main purpose is to present the 

influence of the imprecise DOA estimations on the NN 

beamforming performances. Computer simulations for given 

example will show that the uncertainty in DOAs in the range less 

than ±0.5º will provide satisfactory NN based beamforming.1 
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I.   INTRODUCTION 

    A NN [1,2,3] is a powerful tool in signal processing. Due to 

its strong numerical approximation capability, it is widely 

used in identification and optimization. The research in 

antenna arrays is most active due to its military and 

commercial applications, and also in new solutions for future 

radiotelescopes. The focus of antenna array signal processing 

is on DOA estimation and beamforming. 

    Currently, superresolution algorithms, such as the Multiple 

Signal Classification (MUSIC) and Estimation of Signal 

Parameters via Rotational Invariance Technique (ESPRIT) 

[4], can be used to perform the direction finding or angle of 

arrival estimation. One drawback of these algorithms is the 

difficulty of implementing them in real time because of their 

intensive computational complexity. NNs, on the other hand, 

due to their high-speed computational capability, can obtain 

results in real time. Once the DOAs of sources are available, 

the beamforming algorithm can be used to track, in real time, 

sources of interest, and null out the other sources as 

interference. This is done by controlling the beampattern of an 

antenna array in an adaptive means. Conventional methods are 

typically linear algebra-based methods. They require time-

consuming matrix inversion computation and cannot meat 

real-time requirements. Conventional beamformers require 

highly calibrated antennas with identical element properties. 

Performance degradation often occurs due to the fact that 

these algorithms poorly adapt to element failure or other 

sources of errors. On the other hand, NN-based antenna array 

do not suffer from these shortcoming. They use simple 

addition, multiplication, division, and threshold operations in 

the basic processing element. They possess advantages as 

massive parallelism, nonlinear property, adaptive learning 

capability, generalization capability, strong fault-tolerant 

capability and insensitivity to uncertainty.  
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    The paper is organized as follows: Section II describes the 

DOA estimation problem, Section III presents the NN Null-

Steering algorithm for beamforming, Section IV presents the 

NN DOA uncertainty problem, Section V is presenting the 

results gained from computer simulations, and in Section VI 

some conclusion remarks are noted.              

II.   NN DOA ESTIMATION 

    Let observe a linear antenna array with M elements, let K 

(K<M) be the number of narrowband plane waves, centered at 

frequency ω0 impinging on the array from directions {θ1 θ2 . . 

. θK}. Using complex signal representation, the received 

signal in the ith array element is:  
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where sm(t) is the signal of the m-th wave, ni(t) is the noise 

signal received at the i-th sensor and 
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where d is the spacing between the elements of the array, and 

c is the speed of the light in free-space. In vector notation the 

output of the array is: 

X(t)=AS(t)+N(t)                                 (3) 

where X(t), N(t), and S(t) are: 

X(t)=[ x1(t) x2(t) . . . xM(t)]
T
 

N(t)=[ n1(t) n2(t) . . . nM(t)]
T
                        (4) 

S(t)=[ s1(t) s2(t) . . . sK(t)]
T
 

 

In (3) A is the M × K steering matrix of the array toward the 

direction of the incoming signals: 

A=[a(θ1) a(θ2) . . . a(θK)]                         (5) 

where a(θm) is the steering vector associated with direction 

θm: 

a(θm) =[1 e
-jKm

 e
-j2Km

 . . . e
-j(M-1)Km

]
T
               (6) 

The received spatial correlation matrix R of the received noisy 

signals can be estimated as: 

R=E{X(t)X(t)
H
}=AE[S(t)S

H
(t)]A

H
+E[N(t)N

H
(t)]     (7) 

Following the Fig.1, the antenna array is performing the 

mapping G: R
K
 → C

M
 from the space of DOAs, {Θ=[θ1,θ2, . . 

. , θK]
T
} to the space of sensor output {X(t)=[x1(t) x2(t) . . . 

xM(t)]
T
}. A neural network is used to perform the inverse 

mapping F: C
M 

 → R
K
. For this task a Radial Basis Function 
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(RBFNN) is used [5], instead of backpropagation neural 

network because the second is slower in training. In [5] the 

values of R are used at the input of the NN estimated in block 

R in Fig.1. The antenna view is divided in NN sectors and the 

algorithms for detection and estimation stage are same, the 

difference is only in the number of nodes in the output layer. 

Namely, the number of the nodes in the output layer of the 

first stage (detection) is one (there is a signal gives one, and 

no signal gives 0), and the number of the nodes in the output 

layer of the second stage is determined by the angular 

resolution of the algorithm and the width of the corresponding 

sector. 
    There are a lot of learning strategies that have appeared in 
the literature to train RBFNN. The one used in [5] was 
introduced in [6], where an unsupervised learning algorithm 
(such as K-means [2]) is initially used to identify the centers 
of the Gaussian functions used in the hidden layer. The 
standard deviation of the Gaussian function of a certain mean 
is the average distance to the first few nearest neighbors of the 
means of the other Gaussian functions. This procedure allows 
us to identify the weights (means and standard deviations of 
the Gaussian functions) from the input to the hidden layer. 
The weights from the hidden layer to the output layer are 
estimated by supervised learning known as delta rule, applied 
on single layer networks [3]. With this procedure, for training 
we need 5min in detection stage and about 15min in 
estimation stage. An alternative is instead of using the same 
neural networks in both stages, to use different neural network 
in the first stage. The reason for this is the fact that the task of 
signal detection is a vector classification problem. Any input 
vector should be classified as 0 (there is NO signal in the 
corresponding sector) or 1 (there IS a signal in the corres-
ponding sector). For this task an appropriate neural network is 
Probabilistic Neural Network (PNN), which is proposed in [7].  

III. NN-BASED NULL-STEERING BEAMFORMER 

    Let a(θ1) be the steering vector in the direction where unity 

response is desired, and that a(θ2), a(θ3),. . ., a(θK) are K-1 

steering vectors of interference signal directions. We are 

trying to put nulls in these K-1 directions and to receive the 

signal from direction θ1. We can create the antenna radiation 

pattern by associating a weight value to each antenna element. 

The desired weight vector is the solution to the following 

equations: 

w
H
 a(θ1)=1                                       (8) 

w
H
 a(θi)=0 ,   i=2,…,K                                (9) 

Using matrix notation this becomes: 

w
H
 A=e

T
                                         (10) 

were e is a vector with all zeros except the first element which 

is one: 

e=[1 0 . . . 0]
T   

                                    (11) 

For K=M, A is square matrix. Assuming that the inverse of A 

exists, which requires that all steering vectors are linearly 

independent, the solution for weight vector is: 

w
H
=e

T
A

-1
                                         (12)  

    When steering vectors are not linearly independent A is not 

invertible and its pseudo inverse can be used.  Observing the 

Eq.(12) it follows that the first row of the inverse of A forms 

the desired weight vector. 

    When the number of required nulls is less than M, A is not 

square matrix. A suitable estimate of weights may be 

produced using: 

w
H
=e

T
A

H
(AA

H
)

-1
                               (13) 
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    RBFNN can successfully perform this Beamforming (BF) 

procedure and it is presented with block BF RBFNN in Fig.1. 

Unlike the other authors who use R at the input of the NN, in 

our case we use the DOAs at the input of the BF RBFNN. 

Given combination of DOAs correspond to given radiation 

pattern (antenna weight vector) that produce unity response in 

desired direction, since the NN is trained to give unity 

response only for one DOA (let say the first one). For multi-

user detection we can divide the time into K slots, and each 

slot will correspond to one user. In k-th time slot the position 

of the desired signal direction:θk, in the input vector is first 

one. This time division multiplexing is synchronized with the 

antenna array. 

    The BF RBFNN same as in the DOA estimation stage, is 

consisted of three layers of neurons. The input layer has K 

neurons and the number of neurons in the output layer is 2M 

corresponding to real and imaginary parts of the weights of 

the antenna array elements. The hidden layer dimension is 

larger than that of the input layer. The NN weights from the 

input to the hidden layer are determined by mentioned K-

means algorithm and the NN weights associated to the neuron 

connections from the hidden to the output layer are 

determined with NN training using delta learning rule. The 

BF RBFNN receives input vectors as combinations of DOAs 

and produces the antenna element weights at the output. 

Training pairs are produced using Eq, (12). In this case, 

dividing the space into sectors cannot perform the reduction of 

the number of training samples. The reason for this is the fact 

that the antenna element weights are associated to the whole 

antenna view. Some other means must be developed in order 

to decrease the number of training samples. Also as discussed 

in [8,9] limitation should be expected and future interest is to 

solve these limitations in order a large number of users to be 

served. 

IV. NN DOA UNCERTAINTY PROBLEM 

    DOA estimation using NN concept is related to some 

degree of uncertainty. Namely, the actual vector of DOAs: 

Θ=[θ1,θ2, . . . , θK]
T
 is presented with estimated vector: 

Θ’=[θ1’,θ2’, . . . , θK’]
T
  where: 

 θi’=θi+∆θi ,  i=1,2,…,K                           (14) 

The parameter ∆θi receives random values with uniform 

distribution in the interval [-maxerr, maxerr], where maxerr is 

maximal angle error in degrees. This maximal error is 

dependant from the performances of the NN concept in the 

DOA estimation phase. It is very important to found out the 

degree of accuracy that is necessary for DOA estimation in 

order satisfactory beamforming to be performed. This DOA 

uncertainty can be decreased by appropriate NN training in 

DOA estimation phase or by additional training in NN 

beamforming stage, which will probably overburden the total 

training in beamforming stage. In the next section the worst 

case will be analyzed, that is when all DOAs are assumed to 

be imprecise. 

 

V.   COMPUTER SIMULATIONS 

     Many different examples were investigated, here the 

results for the example when there are K=6 users and M=6 

antenna elements are exposed. A regular linear antenna array 

was used with inter-element spacing of d=0.5 wavelengths. 

The BF RBFNN has 6 neurons in the input layer, 30 in the 

hidden, and 12 neurons in the output one. The centers of 

Gaussian transfer functions in the hidden layer were 

determined with K-means clustering algorithm. The variances 

were estimated as the mean distance of the three nearest 

neighboring centers from the corresponding center. The case 

for φ=const. and θ∈(0°÷180°) was analyzed. The users were 

placed in the space with mutual distance of 20°.    
   
 

 

Fig. 2. Radiation pattern for 6 users at mutual distance of 20° 

 

    Fig.2 is presenting the results gained for antenna array gain 

(radiation pattern) for 6 users placed at mutual distance of 

20°. It can be seen that NN successfully places five nulls and 

successfully receives the user of interest placed at 20,4°. The 

suppression of interference is about 30dB. 

    Now let assume that there are six users at mutual distance 

of 20 degrees and that the DOA estimation NN has performed 

the DOA estimation with accuracy within the range of           

[-maxerr,maxerr]. Fig.3 is presenting the relative error of the 

absolute value of the estimated array weights and Fig.4 is 

presenting the relative error of the argument of the estimated 

array weights, for the case when maxerr=0.1°. It can be 

concluded that null-steering NN successfully performs the 

beamforming almost completely neglecting the DOA 

uncertainty. Fig.5 and Fig.6 are presenting the results gained 

for the case when maxerr=0.5°. The influence of DOA 

uncertainty is obvious. It can be easily concluded that further 

enlargement of the DOA imprecision (the higher value of 

maxerr) will largely damage the null-steering NN 

beamforming performances.  

    We should mention that we have analyzed the case when 

the relative error due to imperfect NN beamforming 

generalization is almost zero in order to observe only the 

influence of the DOA estimation uncertainty.  
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Fig. 3. Relative mean error of |w| for maxerr=0.1° 

 

 

Fig. 4. Relative mean error of arg(w) for maxerr=0.1° 

 

 

Fig. 5. Relative mean error of |w| for maxerr=0.5° 

 

Fig. 6. Relative mean error of arg(w) for maxerr=0.5° 

VI.   CONCLUSIONS 

    A neural network based smart antenna solution was 

presented, both for DOA estimation and for null-steering 

beamforming providing a complete NN solution. The main 

issue was to present the influence of DOA uncertainty while 

NN estimation, on the NN beamforming performances. The 

results from computer simulations showed that the small DOA 

uncertainty doesn’t infect the beamforming. For the given 

example the DOA precision of 0.5 degrees is providing suc-

cessful NN beamforming. The DOA precision can be increa-

sed with appropriate NN training in the DOA estimation phase 

or additional training in beamforming stage can overcome the 

DOA uncertainty but in the same time it will probably over-

burden it. 
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