
29 June – 1 July 2006, Sofia, Bulgaria

290

Threshold Logic Circuits Implementation

 Using FPAA
Boyan P. Lyubenov

1
, Emil D. Manolov

2

Abstract – The paper presents the results from the design and

investigation of basic threshold logic circuits using Field

Programmable Analog Array (FPAA) of Anadigm Inc. To this

aim, the functional model of the threshold logic gate is discussed

and some approaches in building logic functions are presented.

The results from implementation of different FPAA variants of

threshold logic structures are described. The use of the FPAA

ensures possibilities for simple programming and dynamic

reconfiguration of different values of the weights on the inputs as

well as a flexible realization of different logic functions. The

results clearly present the practical use of the discussed approach

and could find application for fast prototyping of threshold logic

based systems with possibilities for flexible real-time prog-

ramming and reconfiguration of the parameters and functions.

Keywords – Threshold logic, Neural networks, Programmable

analog circuits, Field Programmable Analog Array, FPAA

I. INTRODUCTION

The threshold logic (TL) concept was introduced as theory

of logic gates [1], [2], and over the years has promised much

in terms of reduced logic depth and gate count, compared to

conventional Boolean logic based design. Since the basic TL-

gate is functionally more powerful than those of the conven-

tional logic, many complex functions can be synthesized in

TL with lesser number of gates in a shorter logic depth.

Despite the theoretically obvious merits, TL has never had a

significant impact in practice, most probably due to the lack of

efficient physical realization.

In the last decade the fast development of VLSI technology

has made neurocomputer design not only a research topic but

several chips have been developed [3], [4], [5]. Research on

hardware implementations of neurons has recently been very

active. In [6] and [7], for fast prototyping of neural networks,

is used Field Programmable Analog Array (FPAA).

The FPAA circuits have been introduced in 1990’s by some

of the biggest chips’ suppliers. They are analog equivalents of

the Field Programmable Gate Array (FPGA). The main reason

behind FPAA was to help analogue designer to debug their

systems long before real silicon comes out the fabs so that

significant time-to-market reduction can be achieved. Nowa-

days, the FPAA technology is very flexible and powerful

technology for fast prototyping of different electronic systems

[8].

In the presented research is used FPAA chip introduced by

Anadigm® [9]. The Anadigm® AN220E04 is a reconfigu-

rable analog device based on switched capacitor technology.

The paper demonstrates a practical approach for building,

simulation, implementation and verification of different

threshold logic circuits using FPAA.

II. BASIC THRESHOLD LOGIC THEORY

A threshold gate is defined as an n-input logic gate,

functionally similar to a hard-limiting neuron without learning

capability [1]. The gate takes n binary inputs x1, x2 … xn and

provides a single binary output y as it is shown in Fig. 1.

Fig. 1. Threshold logic gate

The output of the gate is determined by the following set of

relations:

≥

= ∑
=

otherwise

Txwif
y

n

i

ii

0

,1
1

, (1)

where Т is the threshold and the wi is the weigh associated

with the i-th input variable xi. The function can be written in

more compact form:

−= ∑

=

Txwy
n

i

ii

1

sgn , (2)

where the sgn() function is defined as follows:

 ≥

=
otherwise

xif
x

0

0,1
)sgn((3).

In order to increase the robustness of the threshold logic

gate, fault tolerances can be added:

∆−<

∆+≥

=

∑

∑

=

=

n

i

ii

n

i

i

Txwif

Txwif

y

1

2

1

1

,0

,1

, (4)

where parameters ∆1 and ∆2 are tolerances that ensure stability

with respect to technology and temperature variations which

can violate functionality of the system.

A device which implements this theoretical model must

compute the linear weighted sum of the binary inputs, store

the threshold value and compare the weighted sum to this

threshold. TL can be programmed to realize many distinct

1Boyan P. Lyubenov is Ph.D. student at Faculty of Electronic Engineering

and Technologies, Technical University – Sofia, 1000 Sofia, Bulgaria
2 Emil D. Manolov is with the Faculty of Electronic Engineering and

Technologies, Technical University – Sofia, 1000 Sofia, Bulgaria, E-mail:

edm@tu-sofia.bg

Boyan P. Lyubenov, Emil D. Manolov

 291

Boolean functions by adjusting the threshold T and/or the

weights wi. For example, an n-input TL gate with T=n will

implement n-input AND gate, but only by setting T=n/2, the

gate will compute a majority function. This versatility means

that TL offers significantly increased computational

capabilities over the conventional AND/OR/NOT logic.

Moreover, the reduced area, increased speed and larger

number of input variables are part of advantages of TL over

conventional Boolean logic.

III. IMPLEMENTATION

Standard logic functions can be easily implemented using

threshold logic gates instead of Boolean. A TL gate can

directly replace every conventional logic gate. If consider 2-

input threshold gate from Fig. 1 and set the weights equal to

‘1’, we can control the property of that gate only by varying

the threshold value.

For instance, to obtain logical operation “AND” the gate

have to be trained for the input pairs (x1 x2) and the output

respond y so that (0 0):0, (1 0):0, (0 1):0, (1 1):1. Analysis of

Eq. (1) in case of w1=w2=1 show that if 1<T≤2 the threshold

gate is AND. Then if the both inputs are ‘1’ the weighted sum

is equal or greater than the threshold T.

The similar approach can be used to implement logical

function “OR”. In this case the inputs signals and output

response are (0 0):0, (1 0):1, (0 1):1, (1 1):1. Analysis of Eq.

(1) in case of w1=w2=1 show that if 0<T≤1 the threshold gate

is OR. The results clearly prove that only by changing the

threshold value T, AND-gate can be transformed to OR-gate

and vice versa. Graphical explanation of the possibility for

threshold adjustment is shown in Fig. 2. Threshold value T

changes the position of the line that separates the plane into

two regions.

Fig. 1. AND/OR function representation

To implement and simulate AND/OR threshold gates

Anadigm Desiger2 program is used. The practical verification

is carried out using Anadigm Evaluation board. The circuit is

shown on Fig. 2: the summation is done by SumDiff block (Σ)

and the comparison - by Comparator. Input levels for x1 and x2

are 0V and 1V respectively and the threshold T changes from

0V to 2V. The circuit simulation and verification confirm the

transformation of OR-gate to AND-gate and vice versa only

by changing the threshold level T (Fig. 3).

Fig. 2. FPAA implementation of AND/OR gate

Fig. 3. Simulation of AND/OR function

Implementation of NAND/NOR gate also is easy task – now

the basic gate output Eq. (1) is changed into Eq. (5):

≥

= ∑
=

otherwise

Txwif
y

n

i

ii

1

,0
1

. (5)

In this case, the regions, where y=1 and y=0, are swapped in

comparison with AND/OR function. FPAA implementation is

identical to the shown on Fig. 2. Only the Comparator block is

changed from non-inverting to inverting mode.

In the case of 3-input logic gate, if 2<T≤3 - the threshold

gate is AND, if 0<T≤1 - the threshold gate is OR. Increasing

the number of the inputs goes not affect the speed of the gate

– this is a very important property that attracts designer’s

attention to threshold logic. The 3-input gate is presented on

Fig. 4. The summing element is 4-input SumDiff (Σ), the

input levels for x1, x2 and x3 are 0V and 1V respectively, and

the threshold T changes from 0V to 3V. The simulations are

shown in Fig. 5. Threshold curve is not presented on the

picture because of the fact that only 4 cursors are available in

Anadigm Desiger2 software [9]. The gate changes its function

according to the value of threshold T.

Threshold Logic Circuits Implementation Using FPAA

 292

Fig. 4. FPAA implementation of 3-input AND/OR gate

Fig. 5. Simulation of 3-input AND/OR gate

Let consider more complex network such as the logical

operation “EXCLUSIVE-OR”. The creation of XOR gate is a

bit complex task. In this case two-level threshold logic is

needed. The logic equation of XOR gate is 2121 xxxxy += .

Fig. 6. XOR function representation and implementation

There are several approaches to implement such gate.

Graphical explanation is shown in Fig. 6. The left picture

shows the area of representation of XOR-function. The right

picture present the implementation of the function using AND

and OR logical components. The goal is to build a system that

performs summation of the outputs of an AND-gate and OR -

gate (Fig. 6). The function can be implemented by using two-

layer network (Fig. 7). The presented network have to be

trained to obtain the following states 0:)00(, 1:)01(,

1:)10(, 0:)11(. Setting 122211211 ==== wwww , the

system have to be solved for T1, T2, T3 and 21 , YY ww as well.

Y1 and Y2 are the outputs of the hidden layer. One possible

solution is to set 0<T2≤1, 0<T3≤1 and 1<T1≤2 and wY1= -1,

wY2=1.

Fig. 7. 2-input 2-layer network

Another possible way to implement a XOR-gate is shown

on Fig. 8. In this case: 1<T1≤2, 0<T2≤1, w11=w12= w21=w22=1,

and wY1= -2.

Fig. 8. Another 2-input 2-layer network

The circuit shown in Fig. 8 is more compact and was

implemented using FPAA (Fig. 9).

Fig. 9. FPAA implementation of 2-input XOR gate

The gate T1 is represented by 3-input SumDiff (Σ) and the

gate T2 by 4-input SumDiff (Σ). GainInv (-G) cell represents

the weight wY1=-2 as was derived above. The thresholds of the

gates are set T1=1.5V and T2=0.5V. At these conditions the

simulations (Fig. 10) clearly show that the presented FPAA

implementation is XOR-gate.

Boyan P. Lyubenov, Emil D. Manolov

 293

Fig. 10. Simulation of 2-input XOR function

Another experiment is to build more complex functions.

There are two basic approaches: either to replace every logic

function with the appropriate threshold logic gate or to train a

special gate to satisfy the wanted function. Two examples are

presented in order to demonstrate these basic options.

Let the wanted function is 321 xxxy += . Using the first

method every operation have to be implemented by a single

TL-gate: firstly 211 xxy = and then 31 xyy += . That means

two gates and two threshold values. The way to build ‘AND’

and ‘OR’ gates was presented above.

The second approach is to use 3-input TL gate. For the input

vectors (x1 x2 x3) the following response y is needed: (0 0 0):0,

(0 0 1):1, (0 1 0):0, (0 1 1):1, (1 0 0):0, (1 0 1):1, (1 1 0):1,

(1 1 1):1. Analysis of Eq. (1) in the case of w1=w2, gives the

following:

 T>0, 0.5T< w1=w2<T, w3>T (6)

Every set of values that satisfy the system (6) represents the

given logic function. This approach reduces the final gate

number and the complexity of the entire system.

FPAA implementation of the discussed function is very

easy. As summing element is used 4-input SumDiff (Σ) and

the weights are set as coefficients within that block (Fig. 4).

One possible solution of (6) to achieve 321 xxxy += is

T=1V, w1=w2=0.6, w3=1.2, input levels for x1, x2 and x3 - 0V

and 1V respectively for logic ‘0’ and logic ‘1’. The simulation

results are given on Fig. 11.

Fig. 11. Simulation of y=x1x2+x3 function

Another logical function is 321)(xxxy += . Now the input

vectors and the output response are (0 0 0):0, (0 0 1):0, (0 1

0):0, (0 1 1):1, (1 0 0):0, (1 0 1):1, (1 1 0):0, (1 1 1):1. The

analysis of Eq. (1), for w1=w2, gives:

T>0, 0< w1=w2<0.5T, T>w3>T-w1 (7)

The function was implemented using FPAA in the same

way as the previous. The conditions are: T=1V, w1=w2=0.4,

w3=0.8, input levels for x1, x2 and x3 - 0V and 1V respectively

for logic ‘0’ and logic ‘1’. The results from simulation

confirm the correctness of the presented deductions.

More complex combinatory functions such multiplexers,

demultiplexers and many other can be implemented using the

approach and basic threshold logic gates proposed above.

IV. CONCLUSIONS

The paper presents an approach for prototyping and

examination of basic threshold logic functions using FPAA.

To this aim, the functional model of the threshold logic gate is

discussed and some approaches in building logic functions are

presented. The results from implementation of different FPAA

variants of threshold logic structures are described. The use of

the FPAA ensures possibilities for simple programming and

dynamic reconfiguration of different values of the weights on

the inputs as well as a flexible realization of different logic

functions. The results clearly present the practical use of the

discussed approach and could find application for fast

prototyping of threshold logic based systems with possibilities

for flexible real-time programming and reconfiguration of the

parameters and functions.

REFERENCES

[1] McCulloch, W.S., Pitts, W., “A logical calculus of the ideas

implement in nervous activity,” Bull. Math. Biophysiol., Vol.

5, 1943, pp. 15-33.

[2] Rosenblatt, F., “The perceptron a probabilistic model for

information storage and organization,” Brain Psych. Rev., Vol.

62, 1958, pp. 368-408.

[3] Huertas, J.L., Sanchez-Solano, S., Baturone, I., Barriga, A.,

“Integrated circuit implementation of fuzzy controllers” IEEE

JSSC, Vol. 31, NO. 7, July 1996, pp. 1051-1058.

[4] Espejo, S., Domingues-Castro, R., Rodrigues-Vazques, A., “A

16x16 cellular neural network chip for connected component

detection”, 1993

[5] Leong, P.H.W., Jabri, M.A., “A VLSI neural network for

morphology classification”, International Joint Conference on

Neural Networks, IJCNN, 1992, Volume: 2, pp. 678-683.

[6] Berenson, D., N. Estevez, H. Lipson, "Hardware Evolution of

Analog Circuits for In-situ Robotic Fault-Recovery," 2005

NASA/DoD Conference on Evolvable Hardware (EH'05),

2005 , pp. 12-19.

[7] Manolov E.D., B.P. Lyubenov, Design and investigation of

two-parameter space classification circuits using FPAA.

Proceedings of the 14th International Scientific and Applied

Science Conference Electronics ET’2005, book 5, pp.99-104.

[8] Manolov, E.D., “Research and Educational Experiments with

FPAA”, 12th International Conference Mixed Design of

Integrated Circuits and Systems MIXDES’2005. Krakow,

Poland, vol.2. pp. 975-980.

[9] Anadigm Inc. Technical Documentation. www.anadigm.com

