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Abstract – An architecture of Generalized Shrinking-
Multiplexing Generator (GSMG), based on Linear Shift 
Feedback Registers (LFSRs), is investigated in the paper. The 
linear complexity of its output binary pseudo random sequences 
is established. Some linear complexity analysis is given. The 
established GSMG properties show that the proposed 
architecture allows producing binary pseudo random sequences 
with good properties like uniform distributions of 1s and 0s, 
unpredictable nonlinearity, enormous period and large linear 
complexity. 
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I. INTRODUCTION 

Nowadays, the clock controlled Pseudo Random Number 
Generators (PRNGs) are an important tool for development of 
stream ciphers, applied in the communication information 
systems. On the one hand, their high performance velocity and 
cost-effective implementation is based on their simple 
architecture which combines fast and cheap elements like 
Linear Feedback Shift Registers (LFSRs) and Feedback with 
Carry Shift Registers (FCSRs) with some nonlinear functions 
[2, 3, 5]. On the other hand, the performance quality of the 
clock controlled PRNGs [6, 7, 8] depends on their crypto 
resistance, which is connected with its ability to generate 
nonlinear Pseudo Random Sequence (PRS) with enormous 
period, uniform distribution and large linear complexity. 

Due to this reason the aim of this paper is to investigate the 
linear complexity of a LFSR based Generalized Shrinking-
Multiplexing Generator (GSMG). The paper is organised as 
follows. First, the LFSR based GSMG architecture is 
described. Second, the linear complexity of the LFSR based 
GSMG is established. After that some linear complexity 
analysis and a comparison with the Shrinking Generator are 
given. Finally, the advantages and possible application areas 
of the LFSR based GSMG are discussed. 

II. THE LFSR BASED GSMG ARCHITECTURE 

The proposed general architecture of the GSMG [9] can be 
realized by means of linear or nonlinear pseudo random 
sequences. There are eight possible variants of the GSMG 
architecture depending on the linear constructive elements, 
which most often are fast and cheap LFSRs and FCSRs. Most 
of these GSMG architectures are statistically analyzed by the 
authors of [11, 12, 13] but strong mathematical analysis have 
not been made yet. Here the fifth architecture, proposed in [9], 
is analyzed. 

The LFSR based GSMG architecture (Fig. 1) uses as 
building modules LFSRs. 

 

 
Fig. 1. The LFSR Based Generalized Shrinking – Multiplexing 

Generator 
 
Definition 1: A LFSR based GSMG comprises a pLFSR R 

of length L which produces one p-ary number in a time and 
p−1 slaved LFSRs of length L1, L2, …, Lp−1. The clock controls 
the movement of a data in all used LFSRs. 

The algorithm of LFSR based GSMG consists of the 
following steps: 

1. All slaved LFSRs and control pLFSR are clocked. 
2. If the p-ary output of the control pLFSR R at moment i is 

non-zero (bi = j, j ≠ 0), the binary output of the slaved LFSRs 
Rj forms a part of the LFSR based GSMG output PRS S. 

3. Otherwise, if the output of the control pLFSR R is equal 
to 0 (bi = 0), the outputs of all slaved LFSRs R1, R2, …, Rp−1 
are discarded. 

Therefore, the produced binary PRS is a shrunken version 
of the slaved binary PRSs, generated by the LFSRs R1 ÷ Rp-1, 
when the output of the control pPRS B is zero, and a mixed 
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version of the slaved PRSs, when the output is nonzero. Due 
to this reason the output LFSR based GSMG sequence S is 
nonlinear and unpredictable with more complexity than the 
sequences, produced by the slaved LFSRs. The nonlinearity in 
the LFSR based GSMG architecture is a result of the fact that 
the linear algebraic structure of the slaved LFSR sequences is 
destroyed by means of the shrinking and multiplexing. 

III. THE LINEAR COMPLEXITY OF THE SEQUENCES 
GENERATED BY THE LFSR BASED GSMG 

In this section it is proved the exponential bounds of the 
linear complexity of sequences, generated by the LFSR based 
GSMG. The importance of the exponentially large PRS linear 
complexity follows from the strong necessity of avoiding 
some popular attacks on PRSs or stream chippers. There is no 
need to know the way a PRS is generated in order to break it 
through its linear complexity. In fact, any PRS with linear 
complexity λ can be easily reconstructed if 2λ bits are known 
by the Berlekamp-Massey algorithm [1, 4], which in time 
O(λ2) finds the shortest LFSR generating this PRS.  

Here it should be mentioned that the high linear complexity 
is only necessary but not sufficient condition PRNG to have 
good cryptographic properties. There are many others 
conditions like period; uniform distribution of d-tuples for a 
large range of d; good, usually lattice-liked, structure in high 
dimensions; good statistical properties; resistance to known 
attacks and so on. 

A. Theoretical analysis 

The following symbols are used when the linear complexity 
of the LFSR based GSMG sequence is established: 
• Li, i = 1, 2, …, p − 1 – length of the slaved LFSR Ri ; 
• L - length of the control pLFSR R; 
• Тi, i = 1, 2, …, p − 1 – period of the slaved LFSR Ri; 
• Т – period of the control pLFSR R; 
• Тs – period of the generated by the LFSR based GSMG 

sequence S; 
• )0(≠N  – quantity of the nonzero elements in a period of 

the control pPRS sequence; 
• aj(i) – the i-th element of the sequence Aj, j = 1, …, 

p − 1, generated by the slaved LFSR Rj; 
• b(i) – the i-th element of the sequence B, generated by 

the control pLFSR R; 
• s(i) – the i-th element of the sequence S, generated by 

the LFSR based GSMG; 
• ki j – i-th position with value j in the sequence B, 

generated by the control pLFSR R. 
Also the following Theorem 1 determining the period Тs of 

the generated by the LFSR based GSMG sequence S is used. 
Refer to [10] to see the proof of the Theorem 1. 

Theorem 1: If the generated by the slaved LFSR Rj 
sequence Aj, j = 1, …, p − 1 and the generated by the control 
pLFSR R sequence B have maximal length (i.e. have primitive 
connections) and all periods Тi are co-prime with the period T, 

i.e. the greatest common devisor is (Тi, Т) = 1 for i = 1, 2, …, 
p − 1, then the output shrinking and multiplexing sequence, 
generated by the LFSR based GSMG, has a maximal period 
defined by the equation: 
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The linear complexity λs of the sequence S generated by the 
LFSR based GSMG satisfies the following Theorem 2. 

Theorem 2: If the generated by the slaved LFSR Rj 
sequence Aj, j = 1, …, p − 1 and the generated by the control 
pLFSR R sequence B have maximal length (i.e. have primitive 
connections) and all periods Тi are co-prime with the period T, 
i.e. the  greatest common devisor is (Тi, Т) = 1 for i = 1, 2, …, 
p − 1, then the output shrinking and multiplexing sequence S, 
generated by the LFSR based GSMG, has a linear complexity 
λs satisfied the inequality 
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The next proposition, which follow from the definition of 
the LFSR based GSMG, is used in the proof. 

Proposition 1: The integers )0(≠N  and T are connected by 
equation 

 K,1,0for),().( )0( =+=+ ≠ nnTkaNnis ij  . (3) 

Proof: To determine an upper bound on the linear 
complexity λs of the sequence S, it is sufficed to find a 
polynomial P(.), for which P(s) = 0, i.e. the coefficients of 
P(.) represents a linear dependency satisfied by the elements 

of a sequence S. Let )0(≠Ns  be the sequence 
K,1,0),)0(( =≠ nnNs , i.e. the sequence S is decimated by 

)0(≠N . 
Proposition 1 states that this decimation results in 

transformations of every slaved sequence of the form 
1,,2,1),( −=+ pjnTia j K . Since (Тj, Т) = 1, j = 1, 2, …, 

p − 1, the above sequences 1,,2,1),( −=+ pjnTia j K  have 
maximal length and have the same linear complexity as the 
original sequences 1,,2,1),( −= pjia j K . Therefore, the 
polynomials Qj(.) of degree Li exist for which Qj(aj) = 0. But 

then the decimated sequence )0(≠Ns  satisfies polynomials 
Qj(.), i.e. 

 1,,2,1,0)( )0( −==≠ pjsQ N
j K . (4) 

Hence, a polynomial 
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of degree ∏
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iLN , such that P(s) = 0, is found.  

Consequently, the linear complexity λs of the sequence S 
generated by the LFSR based GSMG is at most 
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To determine an lower bound on the linear complexity λs of 
the sequence S, it is necessary to find the minimal polynomial 
М(s) for which М(s) = 0. Since the sequence S satisfied the 
equation (4), then the polynomial М(s) divides each 

polynomial 1,,2,1),( )0( −=≠ pjsQ N
j K . After putting the 

equation 

 1)1()0(
−−=≠

LppN  (7) 

in (4), the following equations are obtained 
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Therefore, the minimal polynomial М(s) must be in the 
form r

j sQ ))((  for 1)1( −−≤ pppr . The p is a prime number 

and hence, p − 1 is even. 
The following assumptions will be made 
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Then the minimal polynomial М(s) divides each polynomial 

2

1)1(
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j sQ , 1,,2,1 −= pj K . Since )(sQ j , 
1,,2,1 −= pj K  are irreducible polynomials of degree са Lj, 

they divide the polynomials jTx+1  respectively. 
 

TABLE I 
LINEAR COMPLEXITY OF THE PRSS, GENERATED BY THE LFSR BASED GSMG, WITH P = 3 

Linear Complexity of the PRSs, generated by 
the LFSR based GSMG № Used 

PRSs 
Primitive 

Polynomials Length Period TS 
Lower Bound Upper Bound Real 

PRS A1 1 + x + x3 L1 = 2 
PRS A2 1 + x + x4 L2 = 3 1 
3PRS B 1 + 2x2 + x3 L = 2 

7.15.18 = 
1890 32.3.4 = 108 108.2 = 216 126 

PRS A1 1 + x + x2 L1 = 2 
PRS A2 1 + x + x4 L2 = 4 2 
3PRS B 1 + 2x2 + x3 L = 3 

3.15.18 / 3 
= 270 32.2.4 = 72 72.2 = 144 108 

PRS A1 1 + x + x3 L1 = 3 
PRS A2 1 + x + x2 L2 = 2 3 
3PRS B 1 + 2x2 + x3 L = 3 

7.3.18 = 
378 32.2.3 = 54 54.2 = 108 90 

PRS A1 1 + x + x3 L1 = 3 
PRS A2 1 + x + x4 L2 = 4 4 
3PRS B 2 + x + x2   L = 2 

7.15.6 = 
630 31.3.4 = 36 36.2 = 72 42 

PRS A1 1 + x + x2 L1 = 2 
PRS A2 1 + x + x4 L2 = 4 5 
3PRS B 2 + x + x2   L = 2 

3.15.6 / 3 = 
90 31.2.4 = 24 24.2 = 48 36 

PRS A1 1 + x + x3 L1 = 3 
PRS A2 1 + x + x2 L2 = 2 6 
3PRS B 2 + x + x2   L = 2 

7.3.6 = 126 31.2.3 = 18 18.2 = 36 30 

PRS A1 1 + x + x3 L1 = 3 
PRS A2 1 + x + x2 L2 = 2 7 
3PRS B 2 + x + x4 L = 4 

7.3.54 = 
1134 33.2.3 = 162 162.2 = 324 270 

PRS A1 1 + x + x3 L1 = 3 
PRS A2 1 + x2 + x5 L2 = 5 8 
3PRS B 2 + x + x2 L = 2 

7.31.6 = 
1302 31.3.5 = 45 45.2 = 90 48 

PRS A1 1 + x + x2 L1 = 2 
PRS A2 1 + x2 + x5 L2 = 5 9 
3PRS B 2 + x + x2 L = 2 

3.31.6 = 
558 31.2.5 = 30 30.2 = 60 42 
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Consequently, polynomial М(s) divides 
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But then the period of the sequence S, generated by the 
LFSR based GSMG, is at most 
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This contradicts to the Theorem 1, because 
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Therefore, the assumption isn’t true and 
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i.e. the lower bound on the linear complexity λs of the 
sequence S is 
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This conclusion ends the proof of the Theorem 2. 

B. Practical analysis 

The LFSR based GSMG architecture is modelled in Visual 
C++ environment. The linear complexity of the generated by 
the LFSR based GSMG sequences is practically analyzed by 
means of the Berlekamp-Massey algorithm. The theoretical 
lower and upper bounds of the linear complexity λs, given by 
the Theorem 2 and the found by the Berlekamp-Massey 
algorithm real λs are given in Table 1. The period of the 
output shrinking and multiplexing sequence S also is shown in 
the Table 1. 

The practical analysis of the linear complexity and period 
of the sequences S, generated by the LFSR based GSMG, 
confirm the theoretical results given by Theorem 1 and 
Theorem 2, i.e. the exponential period and exponential bounds 
of the linear complexity. 

IV. CONCLUSION 

In this paper the linear complexity of the LFSR based 
Generalized Shrinking-Multiplexing Generator is investigated 
mainly through algebraic techniques. It is proved the 
exponential lower and upper bounds of the linear complexity 
λs. Thus, the proposed LFSR based GSMG architecture allows 
to produce binary pseudo random sequences with good 
properties like uniform distributions of 1s and 0s, 
unpredictable nonlinearity, enormous period and large linear 
complexity. This shows that the elemental goals of the pseudo 
random number generators are achieved by LFSR based 

GSMGs. Consequently, they can be used as a part of a stream 
ciphers in the height-speed communication applications. 
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