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Abstract – An approach for simulation modelling of overflow 
probability based on the rare event simulation and limited 
relative error is suggested. Тhe developed algorithm for tandem 
queuing system help to speed-up the simulation for estimation of 
overflow probability, which in tandem queuing system is a rare 
event. Numerical and simulation results are shown. 
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I. INTRODUCTION 

Queuing systems are convenient reference models for 
research and analysis of communication systems performance, 
where very important is to evaluate the overflow probability. 
In real communication systems it is impossible to receive the 
values of these probabilities with direct methods, that’s why is 
necessary to involve simulation modeling [1]. 

The model of tandem queuing system is under study in 
order to be able to compare received simulation measures with 
known analytical or numerical results. For example, in tandem 
queuing system, the probability that the content of the second 
buffer exceeds some high level L before it becomes empty 
starting from a given state is a rare event, because it 
probability most often is less than 10-6.  

The estimation of rare event probability using Monte Carlo 
simulation requires a very long computer processing time, and 
cannot be implemented [4]. Lately two basic methods of the 
rare event simulation were developed: Importance splitting of 
the sample path after reach definite intermediate level 
between the starting level and the rare event [6]; and the 
Importance Sampling (IS) generation, where the probability 
density function is used as the rare event evaluation measure, 
which can be compared and changed based on the likelihood 
ratio of the less rare event probability density function [2]. 

RESTART (Repetitive Simulation Trials After Reaching 
Thresholds) approach is an accelerated simulation method, 
which belongs to the so-called importance splitting methods, 
used to the speed-up the rare event simulation [5,7]. 

The Limited Relative Error (LRE) measures the 
complementary distribution function of the queue occupancy 
and performs the Run Time Control (RTC) of the simulation. 

The limited relative error performs the run time control with 
two conditions: first the Large Sample Conditions and second 
the Relative Error Condition. The first condition assures that 
the queuing system has reached the steady state. The second 
condition represents a measure to estimate the relative error at 
the current state of the simulation.  

For simulation modeling of overflow probabilities in 
tandem queuing system in this paper consider RESTART 
approach combined with limited relative error. 

II. OVERFLOW PROBABILITY OF TENDEM QUEUES 

Many models used for evaluation of queuing systems 
performance can be presented as discrete-time Markov chains 
(DTMCs) [3]. This is the case if all inter-arrival times and 
service times have an exponential distribution, and the 
quantity of interest is the overflow probability. Note that some 
other performance measures, like delays, cannot be obtained 
from the discrete-time Markov chain description. A DTMC 
for a Markov queuing model has a highly regular structure. 
First of all, the states typically can be arranged conveniently 
on a grid with as many dimensions as the number of queues, 
where each of coordinates represents the number of customers 
in one of the queues. Secondly, every transition in the DTMC 
corresponds to an elementary event in the queuing model: an 
arrival or a service completion at one of the queues. These 
events are known as “transition events” and they are defined 
independently of the state; i.e., there is only one transition 
event for a service completion at a given queue, and this 
single transition event corresponds to a transition out of every 
state in the DTMC in which this particular queue is non-
empty. From the other side not all transition events are 
“enabled” in every state: e.g., in a state where a particular 
queue is empty, the service completion event of that particular 
queue is not possible, i.e., not enabled. 

Consider the overflow probability of the total population in 
a queuing network consisting of two queues in tandem 
presented on Figure.1, where customers arrive at the first 
queue according to a Poisson-process with arrival rate λ. Both 
servers have exponentially-distributed service times with rates 
μ1 and μ2.  

 
Figure 1. Two-queue tandem network. 

The state of the system at any time is given by the two 
integer values n1 and n2, which are the number of customers in 
the first and second queues, respectively. 
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The difficulty of applying standard simulation techniques 
arises when the first queue is the bottleneck and the rare set 
definition is related to the value of n2. In this case it would be 
better to apply one of splitting methods for rare event 
simulation with careful choice of the importance function [3]. 
On Figure 2 is presented state space of two queues in tandem 
network. 
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Figure 2. State space of two queues in tandem network 

 
For the considered two-queue tandem network the rare 

event set A include the following three cases, where L is the 
level of overflow of the queues (1). 
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There exist three possible cases for rare event: 

A. Rare event defined as n1 + n2≥L 

For this definition of the rare event set, the possible states 
for rare event are (0,n1+n2) or (0,(n1+n2-1)). The importance of 
these states is different. The higher value of n1 (for n1+n2), 
given that customer at n1 has to be served by both servers 
before leaving the system, while a customer at n2 has to be 
served only at the second one. Here the bottleneck is the first 
queue, so the states with high value of n1 and low value of n2 
have the highest probability. 

B. Rare event defined as n1≥L 

For this definition of the rare event set n1≥L, to obtain states 
with closer importance, it seems that the weight given to n2, 
have to be given to n1. 

C. Rare event defined as Min(n1,n2)≥L 

For n1≤L and n2≤L, the rare event set is in the queue with 
fewer customers. 

III. THE LRE APPROACH 

The limited relative error approach tries to construct 
independent samples from a given time series by building 
batches that tend to have lesser autocorrelation than the 

original series. It leads to reduction of autocorrelation and 
results in confidence intervals for the mean of the simulation 
results. The limited relative error approach is implemented 
with counters to measure the quantities: n - number of trials; 
hi - state frequency; li - number of times the queue was in state 
i when a cell arrived; ai - transition frequency for decreasing 
number of transitions from j to i between two arrivals, with 
j>I. From these counters the quantities li and di are (2) and (3). 
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If the large sample conditions and relative error condition 
has to be fulfilled and the results of it are summarized in the 
end of the algorithm. The large sample conditions are 
presented as (4). 
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The relative error condition is presented as (5). 
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The LRE approach starts with index i=1, tests the 
conditions (4) and (5), and if the conditions are fulfilled the 
LRE advances to the next index i. The simulation is 
terminated for the last index i=Lm, where Lm is the overflow 
conditional probability. 

IV. ALGORITHM WITH RESTART  

The RESTART method is a simple simulation method for 
the estimation of small probabilities. Applying the RESTART 
means to split the possible range of values of λ into regions 
with different importance. The given set of thresholds is Li, 
i=0,1,2,...,m. The system reaches the state L0, while evaluating 
the first interval [0, L0] the system states are saved. Once the 
values for the first interval are established at the time t0, the 
simulation restarts from one of the previously saved states at 
threshold L0. Each time when the threshold L0 is crossed a 
restart is performed with one of the saved states, which is 
chosen randomly and the system is reload with this state.  

The RESTART method is used to the speed-up the rare 
event simulation for estimation of overflow probability 
defined as (6). 
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The relative error 
i

REmax  is a function of the overall 
relative error REmax and the number of thresholds m is defined 
as (7). 
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The proper choice of the thresholds Li leads to a maximum 
speed-up according to (8). 
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Since the complementary cumulative density function is 
monotonically decreasing, and the thresholds are properly 
chosen, the RESTART method will speed-up the simulation. 

The following algorithm with RESTART/LRE for tandem 
queuing systems was developed: 

Algorithm RESTART/LRE 

Step 1 Initialization 
Specification of the rare event L, number of levels m, the 

values of the thresholds L0,…,Lm-1, and the maximal relative 
error REmax ; 

Definition of generated random variables β and the upper 
and lower boundary for generated variables βmax and βmin; 

Definition of parameters for arrival and service process; 
Calculation maximal relative error REmax i from REmax; 
Generate model objects (traffic sources, queues, network 
nodes); 
Initialization of counters, parameters of the system and 

the matrix of the state space (Fig. 2) 
Definition of the rare event set and kind of the model: 

Case 1: Rare event set defined as n1 + n2≥L 
Case 2: Rare event set defined as n2≥L 
Case 3: Rare event set defined as Min(n1 + n2)≥L 
Initialization of number of runs n:=0 and the 

simulation time s:=1; 
Set the scaling factor U:=1; 
Start simulation; 

Step 2 Outer loop 
If (n≥103 AND (li, di) ≥102 AND (ai, li-ai, di-a) ≥10) 

Step 3 For i=0 
 While not (error< REmax for L0-1 to L0)  

Simulation continues with generating a new value 
of random variables β with Poisson distribution. 

Estimation of generated random variable β: 
whether β is in the left side of L0-1 or in the right side of L0; 
Result of estimation: the new value of β is accepted if it is in 
the right side and the state is stored for RESTART; 

Evaluation Counter=Counter+1, 
End; 

Step 4 Inner loop 
For i=1 to m 

Set the thresholds L0,…,Lm for the rare event L; 
 While not (error< REmax for L i-1 to L I)  

Restore one random state from Li-1 ; 
Calculation Relative Error for Complementary 

Cumulative Distribution Function for 
11 −− ≥ ii LLG β  to 

1−≥ iLLG β . If the RE >REmax the simulation stop and the new 

random state is restored; 
Simulation continues with generating data: new 

value of random variables β with Poisson distribution end 
estimation whether β is in the left side of Li-1 or in the right 
side as Li. The new value of β is accepted if it is in the right 
side and the state is stored for RESTART. 

Evaluation Counter=Counter+1; 
n:=n+1 
Set scaling factor U:= 

1−≥ iLLG β ; 

Multiplication of G-values with U for Li-1,…, Li; 
Continue simulation till the last value of n; 

End; 
Step 5 Output results 
Calculation of final results: 
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END. 

V. NUMERICAL EXAMPLE  

The simulation results for RESTART/LRE algorithm are 
received with simulation program on Visual C++ with 
implemented of Ptolemy as a powerful, object-oriented 
simulator and Microsoft Visual Studio 3.0. The simulator is 
available with source code for operating systems Windows 9x, 
NT, XP. All the simulation examples were executed on 
Personal computer with properties: Pentium, 1,4 GHz, 312Mb 
RAM, operating system Windows XP Professional. One 
example of a part of developed simulation software is shown 
on Figure 3. 

 

 
Figure 3. Program realization 

Customers with Poisson arrival distribution enter the first 
queue with buffer size n1=6 for service completion and enter 
the second one with buffer size n2=5 for service completion as 
is shown on Figure 2. The mean arrival rate at the first queue 
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is λ and the service time is exponentially distributed in each 
queue with mean service rates μ1 and μ2, respectively. The 
load at each queue is ρ1 = λ/μ1 and ρ2 = λ/μ2. The generated 
random variables with Poisson arrival distribution are shown 
on Figure 4. 

 
Figure 4. Generation of variables with Poisson distribution 

The buffer size at each queue is assumed to be finite. 
Consider example with arrival rates λ=0,6 and service 
completion with rates μ1=0,7 and μ2=0,8. The number of 
simulation samples is n=10 000. 

In all the runs, the simulation length was adjusted to have a 
relative half width of the 95% confidence interval (relative 
error) equal to 10%. The interval width was evaluated using 
the batch means method [3].  

The investigated states defined as rare event L are in the 
end of the first queue (5,0), the minimum (5,4), and in the end 
of the second queue (0,4). The importance of each of these 
states is different. The thresholds were chosen as L=0,8 and 
L=0,9. The number of restarts in the numerical example is 2. 
The number of samples is n=10 000. 

In Table 1 are shown the received simulation results for 
L=0,8; relative error RE=5%, λ=0,3, μ1=0,4 and μ2=0,9. For 
comparison are given theoretical results and simulation time. 
 
Table 1 Results for tandem queue network with n=10 000 simulation 
samples,  

Definition of  
Rare state 

GL theoretical GL  Time, 
ms 

First case: (5,0) 0,0318598651 9,292000e-006 2,549 
Second case: 
(0,4) 

0,0020832578 6,912656e-006 2,346 

Third case: 
(5,4) 

0,0000417815 7,849558e-006 2,836 

 
In Table 2 are shown the received simulation results for 

L=0,9; relative error RE=10%, λ=0,4, μ1=0,7 and μ2=0,9. For 
comparison are given theoretical results and simulation time. 

 
 
 
 
 
 

 
 

Table 2 Results for tandem queues network with n=10 000 
simulation samples, 

Definition of  
Rare state 

GL theoretical GL  Time, 
ms 

First case: (5,0) 0,0134789964 9,582591e-006 2,836 
Second case: 
(0,4) 

0,0078628157 5,983916e-006 2,513 

Third case: 
(5,4) 

0,0003996907 3,129537e-006 3,349 

VI. CONCLUSION  

The simulation modeling of overflow probability based on 
the rare event simulation and limited relative error was under 
consideration. Тhe developed algorithm for tandem queuing 
system help to the speed-up the simulation for estimation of 
overflow probability, which in tandem queuing system is a 
rare event. The received simulation results for the basic 
reference model, two server queuing system – FIFO with a 
finite buffer size N, shows that suggested approach and 
algorithm are suitable for rare event simulation with large 
number of customers in complex communication networks. 
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